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Abstract

The comparative study of the results of various segmentation methods for the digital images of the follicular
lymphoma cancer tissue section is described in this paper. The sensitivity and specificity and some other parameters
of the following adaptive threshold methods of segmentation: the Niblack method, the Sauvola method, the White
method, the Bernsen method, the Yasuda method and the Palumbo method, are calculated. Methods are applied to
three types of images constructed by extraction of the brown colour information from the artificial images
synthesized based on counterpart experimentally captured images. This paper presents usefulness of the microscopic
image synthesis method in evaluation as well as comparison of the image processing results. The results of thoughtful
analysis of broad range of adaptive threshold methods applied to: (1) the blue channel of RGB, (2) the brown colour
extracted by deconvolution and (3) the ’brown component’ extracted from RGB allows to select some pairs: method
and type of image for which this method is most efficient considering various criteria e.g. accuracy and precision in
area detection or accuracy in number of objects detection and so on. The comparison shows that the White, the
Bernsen and the Sauvola methods results are better than the results of the rest of the methods for all types of
monochromatic images. All three methods segments the immunopositive nuclei with the mean accuracy of 0.9952,
0.9942 and 0.9944 respectively, when treated totally. However the best results are achieved for monochromatic image
in which intensity shows brown colour map constructed by colour deconvolution algorithm. The specificity in the
cases of the Bernsen and the White methods is 1 and sensitivities are: 0.74 for White and 0.91 for Bernsen methods
while the Sauvola method achieves sensitivity value of 0.74 and the specificity value of 0.99. According to
Bland-Altman plot the Sauvola method selected objects are segmented without undercutting the area for true
positive objects but with extra false positive objects. The Sauvola and the Bernsen methods gives complementary
results what will be exploited when the new method of virtual tissue slides segmentation be develop.

Virtual Slides: The virtual slides for this article can be found here: slide 1: http://diagnosticpathology.slidepath.com/
dih/webViewer.php?snapshotId=13617947952577 and slide 2: http://diagnosticpathology.slidepath.com/dih/
webViewer.php?snapshotId=13617948230017.
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Introduction
Immunohistochemically (IHC) stained tissue samples are
used by pathologists to establish the diagnosis and the
prognosis and the treatment in various types of cancer
[1-4]. The evaluation process takes into account the
amount of immunopositive cells (membrane, cytoplasm
or nuclear staining) and the architecture of the tissue
sample. Such evaluation can be done by the experienced
pathologist directly via microscope or from digital images
of the samples.
The human direct evaluation is irreproducible, time-

consuming as well as intra- and interobserver error prone
[5]. So different automated methods, based on the digi-
tal image processing are proposed, as they promise the
improvement of evaluation reproducibility and they can
become tools for inter- and intralaboratory unification in
cut-offs and threshold levels [6].
To make the validation more accurate and precise,

the image segmentation should indicate cells’ membrane,
cells’ cytoplasm and/or nuclei and/or other organelles
(e.g. the lysosome) efficiently and robustly [7-9]. The
error in objects detection ought to be as small as pos-
sible and should be given explicitly since it determines
errors in features important in the process of diagno-
sis. Errors in objects detection influences objects mor-
phology evaluation, pattern of objects’ distribution and
texture features which reflects chromatin distribution
[10,11].
Segmentation of the images of stained tissue samples is

a complex problem, because of huge variability of shapes,
size and colour in the objects of interest and in the general
architecture of the tissue samples. So far, there have been
developed many methods, which detect objects of interest
in these types of images, by many groups [12-18]. These
methods come from various segmentation approaches
and present various advantages and disadvantages. The
main obstacle is that all these methods are validated by
their authors on their experimentally captured images.
There is lack of any comparative study which answers a
question of usefulness, efficiency and reproducibility of
the particular method, applying it to the particular type of
tissue and/or staining processes. Using comparative study
on fixed images’ database it is possible to achieve result
even if a very small difference in results of segmentation is
expected.
The comparative study of results of various methods

of segmentation has been performed for the fluorescent
microscopy images of living cell images [6], for the stained
tissue section in neuroblastoma cancer (Ki67) [8] and
breast cancer cells (estrogen/progesterone status) [1]. In
the case of fluorescent microscopy images segmentation,
the Lehmusola and co-workers [19,20] proposed evalu-
ate segmentation method using set of synthetic images
constructed by prepared software with assumed objects’

border position. The averaged multiple manual segmen-
tation results were treated as reference “true” in the case
of the other comparisons. Because comparison results for
fluorescent images allows their authors to detect small
differences in method performance, it was decided to
use synthetic images to compare chosen segmentation
methods. This paper presents the method of artificial
tissue sections images construction. In this method the
position, shape and colour of objects and background
are generated according to statistical model constructed
based on observation the set of experimentally acquired
images and on the physics of digital image acquisition
and microscope image erasing. In this paper the fol-
licular lymphoma cancer tissue sections immunohisto-
chemically stained with 3,3’-diaminobenzidine (DAB) and
contra-stained with hematoxylin (H) are under inter-
est. The images captured from several tissue sections
and from various camera and microscope sets are
used to gain the knowledge about images features and
characteristics.
The reliable evaluation of the chosen adaptive thresh-

old methods of segmentation is the main goal of this
investigation. The results of this study will serve as the
background for developing of a new hybrid method in
the next step of our investigation. But there is the addi-
tional aim of this paper: to present usefulness of the
images synthesis method in evaluation and comparison
of the image processing results. The synthetic images
maintain features of experimental images such as level
of noise, range of colour and tones, vignietting, and
so on in controlled degree what gives researcher pos-
sibility to observe the influence of all the features and
each feature separately on the result of image processing
methods.
Next section “Related works” shows the review of prin-

cipia of the automated approaches developed so far and
used for various types of cancer tissue sections evaluation.
The following section contains description of the char-
acteristics of experimentally acquired lymphoma section
tissue images stained with DAB & H. In total, six methods
of segmentation are introduced in the other section. The
experimentally collected and synthesized artificial images
are presented subsequently. The validation of the meth-
ods and the results of their comparison are described in
the section entitled “The results of the adaptive threshold
method comparison”. The discussion and conclusions are
presented in the last section.

Related works
First systems for microscopic image analysis in
histopathology, e.g. iPATH or UICC-TPCC [21], have
been established as academic projects. The following
steps have been performed in these systems: sampling,
segmentation and calculation of chosen features which
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are determined among normal, benign and malignant
cells or cells’ nuclei. The System EAMUS [22] followed
the systems described above. It was dedicated to the dig-
italized glass slides, called virtual slides, for telemedicine
which was designed as remote systems connected by
internet with automatic image measurement systems to
consults physicians and scientists. Its successor was devel-
oped under MATLAB and Java platform by Markiewicz
[23] as a system for specific markers and pathologies.
Both these systems are applied within the telepathology
projects framework as a tool for verification the idea of
the examination of microscopic images from a distance.
Next semi-automatic computer-assisted systems for
histopathology and immunohistopathology have become
commercially available from DAKO and Aperio. But they
are used as the virtual multiresolution slides constructors
rather, than the sample or object in sample classification
systems. More oriented towards feature evaluation is
system proposed by Bueno [24] as parallel solution for
high resolution histological and immunohistchmemicaly
stained tissue section images. What was learned from the
use of all systems described above is that the automatic
image segmentation, as the bottle neck of the computer-
aided image analysis method is the most complex and
challenging step in both histopathological samples images
of paraffin tissue sections and also for cytological smears
[25-27]. There are some complex and sophisticated
algorithms [8,12,14,28-30], which have been developed
and tested for various markers used in digital images
of the histopatological samples apply to various tissues
in various pathology. All of them use various threshold
methods on selected or modified colour information
separated from RGB digital images. Some of them use
blue channel only as it gives greatest contrast between
brown and blue but loose information about brown
colour spread in G an R channels [31], the other propose
combination of all channels of RGB as: -“brown axis” =
B-0.3*(R+G) Tadrous 2010, [32], -colour deconvolution
in which three well defined colour vectors, describing
new colours in old colour space, should be achieved as
calibration information (Ruifrok and Johanston 2001)
[33-35], -“de-staining” algorithm separating up to three
visually distinct colours to effect selective contrast [32].
Minority of algorithms uses HSV colour model in which
detection of the brown colour can be simply rotation of
the hue axes by Kuse [36]. All of threshold methods suffer
from a lack of universality as they are adjusted by specifics
image parameters: level of contrast [37-39] or degree
of saturation [8] and so on. It is observed that changes
in image characteristics caused by tissue variability or
more often by optics and camera settings cases moderate
results of segmentation [15,40]. This paper compares
the results of chosen thresholding methods applied to
three types of colour information captured form RGB

digital images: (1) B channel, (2) brown axis and (3)
deconvolution to separate brown channel. It allows us to
analyze which thresholding method is effective towards
which type of colour information if brown objects in
DAB & H staining lymphoma tissue section should be
selected.

The characteristics of experimentally acquired lymphoma
section tissue images stained with DAB & H
Digital images of tissue section of paraffin embedded
lymphomas where captured in a brightfield micro-
scope. These images differ in colour ranges, pattern of
object - cells’ nuclei - distribution as well as in local and
global contrast and brightness. Figure 1 (top-left) shows
the image collected in the Hospital de Tortosa Verge
de la Cinta using the indirect immunohistochemical
primary antibodies against FOXP3 and the secondary
antibodies which include the peroxidase block, labeled
polymer, buffered with substrate/DAB+ chromogen and
finally contra-stained with hematoxylin. All images show
the brown end products for the immunopositive cells’
nuclei among blue colour nuclei for the immunonegative
cells.
The singular brown objects as well as the small clus-

ters of brown objects, surrounded by blue ones, are
observed in images. Nuclei are touching, not overlap-
ping one another, in the clusters. Variation in blue and
brown colours, as well as variation in objects density in
one image and from one image to another, is observed.
The inside of brown objects is visible as almost homoge-
neous, with smooth and slightly visible texture, while the
inside of blue objects seems to be filled mostly with curly
texture. Cells’ nuclei marked with FOXP3 are nuclei of
regulatory T-cells, it means immune system cells, so their
distribution of size is similar to normal T-cells’ popula-
tion (distribution with small range and sharp peak), while
distribution of most of the blue nuclei cells’ population
is typical for cancer cells’ population (tumoral B lympho-
cytes). But some image features hinder the segmentation
process, e.g. a presence of:

• spurious stain deposits in other types of cells:
stromal, scar, lymphocytes;

• very dark parts of blue stained nuclei;
• partly blurred nuclei border with the colour rim

caused by the chromatic aberration;
• colour noise.

Some non-homogeneity of light distribution in a sin-
gle image is observed: the middle part is brighter than
the peripheral one. Even images collected by one pathol-
ogist, using the particular microscope and camera, differ
one from another. It is caused by random changes in
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Figure 1 Experimentally collected image. The experimentally collected image (top-left) and its B-channel of RGB (top-right), its “brown” axis
(bottom-left) and its brown map after colour deconvolution (bottom-right).

external light conditions and chosen parameters of image
acquisition.
All features of images and objects of interest described

above, observable in Figure 1 (top-left), cause that adap-
tive threshold methods of segmentation are adequate to
the situation. Six adaptive methods of threshold, locally
adjusted to the contrast, originally defined for documents
and the text segmentation, have been adjusted to ana-
lyze three versions of colour information extracted from
images with objects in various shades of brown among
blue textured spots on the off-white background. The cho-
sen thresholdmethods, themethod of comparison and the
results of thresholds are presented in the next sections.

Methods
The chosenmethods of segmentation
Image segmentation can be considered as the process
of dividing an image into multiple components [41,42].
It is usually used to separate objects from the back-
ground. There are many forms of image segmentation:
thresholding, clustering, transform and edge or texture
based methods. The segmentation as some delimitation
of boundaries between compartments in this case is lim-
ited to detect a hypothetical (not existing in real word) line
between nucleus and surrounding cytoplasm or stroma.

Because of contrast fluctuation between objects of inter-
est and background across image plane and from image
to image the locally adaptive thresholding methods seems
to be appropriate. The method which have been defined
for text detection in scanned digital documents deal with
grayscale images with Gaussian and uniform noise char-
acteristics and with big contrast. Although the acquired
images are 3-channel RGB images, the segmentation algo-
rithms treat separately monochromatic images containing
separated information of brown colour:

• the blue channel from RGB, presented in Figure 1
(top-right), because of the results of the analysis of
cells’ nuclei profiles presented in Figure 2;

• the “brown channel” calculated from RGB image
which is presented in Figure 1 (bottom-left);

• the results of brown colour deconvolusion from RGB
image which can be observed in Figure 1
(bottom-right).

All images which have been prepared to the compari-
son are transformed to obtain introduced three versions of
each image. All tested methods are implemented in MAT-
LAB [23] and used to calculate results of segmentation for
all version of colour information.
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Figure 2 Comparison of blue and brown objects. The presentation of magnified brown object from experimentally collected image (top-left)
and its line profile (top-right) and the blue object (bottom-left) with its line profile (bottom-right).

Locally adaptive thresholding
Local threshold is calculated at every point of image
with sliding window image processing. Threshold value
is based on the intensity of the pixel and its neighbor-
hood [43]. In this paper it is considered: two local variance
methods, three local contrast methods and one center-
surround scheme. All expressions used in algorithms
presented below are described in Table 1.

Table 1 Expressions

Expession Definition

I Image of sizeM × N

I(x, y) Intensity value

B(x, y) Binarization algorithm

T(x, y) Threshold value algorithm

mnb(x, y) Mean value of the neighborhood of analyzed pixel

mwxw(x, y) Mean value of the window of size w

σ(x, y) Standard deviation

μ(x, y) Variance

C(x, y) Contrast as a difference between max and min

0 Object

1 Background

Used expressions.

Niblack
The most basic adaptive threshold method is Niblack
method [44] and it belongs to the group of local variance
methods. Local threshold is calculated based onmean and
standard deviation of local neighborhood of size set by the
parameterw. Another applied parameter k introduces bias
of variance value.

B(x, y) =
{
1 if I(x, y) > T(x, y),
0 otherwise. , where

T(x, y) = mw×w(x, y) + k · σw×w(x, y)
(1)

These two parameters of Niblack method values and the
rest of used parameters values are presented in Table 2.

Table 2 Parameters

w k R bias Tc T1 T2 T3 T4

Niblack 51 -0.2 150

Sauvola 51 -0.2 128 150

White 51 2 150

Bernsen 51 150

Palumbo 51 150 20 0.85

Yasauda 51 150 50 100 128 15

Values of parameters used in segmentation methods.
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Sauvola
Method presented by Sauvola and Pietaksinen [45] is
another local variance method and can be treated as mod-
ified version of Niblack’s local variance method. It is based
on one more parameter (R) which introduces the variance
standardization value.

B(x, y) =
{
1 if I(x, y) > T(x, y),
0 otherwise. , where

T(x, y) = mw×w(x, y) +
{
1 + k ·

[
σw×w(x, y)

R
− 1

]}
(2)

White
The method presented by White and Rohrer [37] sepa-
rates objects from background if the value of the ana-
lyzed pixel multiplied by the bias parameter is greater
than mean value of neighborhood it is considered as an
object. Basically, if the pixel is considerably darker than its
surrounding, it is considered as an object.

B(x, y) =
{
1 if mw×w(x, y) < I(x, y) · bias,
0 otherwise. (3)

Bernsen
Another local contrast method is offered by Bernsen
[38], as two stage method. Contrast value as a difference
between the maximum and minimum value in neighbor-
hood is calculated during first stage of calculation. In
second stage threshold value is calculated as a mean of
theminimum andmaximum value in neighborhood of the
analyzed pixel if the contrast value was high enough (over
assumed Tc value).

B(x, y) =
{
1 if I(x, y) > T(x, y),
0 otherwise. , where

T(x, y) =
{ maxw×w(x,y)+minw×w(x,y)

2 if Cw×w(x, y) ≥ Tc,
0 otherwise.

(4)

Yasuda
The Yasuda, Dubois and Huang’s method [39] is local
contrast method and consists of four steps [46].

Step 1. Increasing dynamic range in the image.

I1(x, y) = I(x, y) − min(I)
max(I) − min(I)

(5)

Step 2.Nonlinear smoothing. Replace pixel with average
value (mnb) of its (3 by 3) neighbourhood if local range is
below assumed value of T1.

I2(x, y) =
{
mnb if (max(nb) − min(nb)) < T1,
I1(x, y) otherwise.

(6)

Step 3. Primary thresholding with course marking of
background. For every pixel its neighborhood is taken
and if its local contrast is not greater than assumed value
of T2 or value of the pixel is greater than average of
neighborhood. Wherever condition is met, it is flagged as
background. For every other pixel the given calculation is
performed.

I3(x, y)=
{
1 if mw×w(x, y)< I2(x, y)∨cw<T2
I2(x,y)−minw×w(x,y)

cw otherwise.

where cw=max
w×w

(x, y) − min
w×w

(x, y)

(7)

Step 4. Secondary thresholding with precise segmenta-
tion to classify rest of the pixels. Sliding window image
processing uses 3 by 3 window. In this step the pixel is
marked as background if minimum from neighborhood is
not greater than assumed value of T3 or variance is greater
than assumed value of T4.

B(x, y) =
{
0 if min3×3(x, y) < T3 ∨ σw×w(x, y) > T4
1 otherwise.

(8)

Palumbo
The last but not least testedmethod designed by Palumbo,
Swaminathan and Srihari [47] is using center-surround
scheme. The sliding window is divided symmetrically into
9 smaller windows, but only 5 of those are used in com-
putations. Acenter is near neighborhood and 4 diagonal
windows are far neighborhood (Aneigh). The tested pixel
is supposed to be treated as object when the central win-
dow contains the foreground object and the neighboring
windows are filled with background.

B(x, y) =
{
0 if I(x, y) < T1 ∨ T2 · m(Aneigh) > m · (Acenter),
1 otherwise.

(9)

Hybrid methods
Niblack and Sauvola methods appear to be insufficiently
sensitive in case of ICH images and they were modified for
a better use. It was done by adding the contrast condition
similar to that defined in Bernsen method.

Hybrid of Niblack and Bernsen
Under the contrast condition defined by Bernsen method
the threshold value is calculated using the equation
defined by Niblack method.

B(x, y) =
{
1 if I(x, y) > T(x, y),
0 otherwise. , where

T(x, y) =
{
mw×w(x, y) + k · σw×w(x, y) if Cw×w ≥ Tc,
0 otherwise.

(10)
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Hybrid of Sauvola and Bernsen
Under the contrast condition defined by Bernsen method
the threshold value is calculated using the equation
defined by Sauvola method.

B(x, y) =
{
1 if I(x, y) > T(x, y),
0 otherwise. , where

T(x, y) =
{
mw×w(x, y)+

{
1+k ·

[
σw×w(x,y)

R −1
]}

if Cw×w ≥ Tc,
0 otherwise.

(11)

From this point onward, reference to the Niblack and
Sauvola methods means their respective Hybrids with
Bernsenmethod. After a successful segmenting the image,
a simple postprosessing is done. The used postprocessing
consist of tresholding by size where every object with area
lesser than 900px is discriminated from outcome image.

Themethods of comparison of the chosen segmentation
methods results
Testing synthetic images were paired with their cor-
responding binary representation (template) where
assumed shape and location of positive cells’ nuclei are
marked. Taking into account the binary image as a refer-
ence following measurements are possible: - true positive
(TP), - true negative (TN), - false positive (FP), - false
negative (FN), basing on template and results of each
segmentation method.
Based on these parameters, statistical measurement

of the performance of segmentation methods can be
calculated:
Sensitivity

S = TP
TP + FN

(12)

Specificity

P = TN
TN + FP

(13)

Dice’s coefficient

rD = 2 · TP
2 · TP + FN + FP

(14)

Jaccard’s coefficient

rJ = TP
TP + FN + FP

(15)

Sokal and Sneath’s coefficient

rSS = TP
TP + 2 · FN + 2 · FP (16)

Rogers and Tanimoto’s coefficient

rRT = TP + TN
TP + TN + 2 · FN + 2 · FP (17)

To analyze agreement between results of segmentation
and ‘true’ value presented by template the Bland-Altman
plots (B-A plots) were produced for 70 objects segmented
for each method (6) and each type of colour information
(3) and for selected feature (5) e.g. area, axis ratio of the
ellipse fitted to object, roundness, solidity and eccentric-
ity. The results of the analysis of 90 plots encouraged us
to develop our own parameter which allows us to find any
bias or presence of outliners in cretin aspect of method
performance. This parameter was defined as the sum of
false positive (FP) and false negative (FN) areas divided by
area of ‘true’ object observed in the function of distance
between centroids of the ’true’ objects and segmented
object. Plots similar to B-A plot but comparing the cen-
troids distance with the sum of FP and FN divided by
area of ‘true’ object allow identification of objects with
specifically distributed erroneously detected pixels. When
the distance between centroids has small value while sec-
ond parameter has big value it means that extra detected
or undetected area is homogeneously distributed around
the object otherwise badly detected or undetected area is
located in such a way that detected area centroid moves
away from template object centroid. It allows us to deter-
mine if any of examined methods presents any stable or
occasionally occurring bias in erroneously detected area.

The experimentally collected and the synthesized
artificial images
The experimentally collected images
The variability in appearance of the tissue section in
images stained with DAB & H is remarkable due to: (1)
inherent features of tissue and variability of morphology
in pathological cases, (2) inherent variability of results of
the staining process and (3) inherent microscopic defor-
mations as well as introduced artefacts and noise.
The morphology of pathological follicular lymphoma

tissues varies [48]. Besides the different pathological
manifestations, the variability in appearance of staining
samples increases during the tissues preparation. This
procedure is standardized but has a non-deterministic
nature because the number of chemical particles of
the stain bound to the nucleus is random. It impli-
cates variation in the brown colour, from the inten-
sive orange, through the intensive brown to the dark
brown in immunopositive nuclei [8,14]. The paper deals
with samples immunohistochemically stained against
FOXP3, which indicates nuclei of regulatory T-cells [3].
This type of staining procedure produces brown objects
(immunopositive nuclei of regulatory T-cells) among blue
objects (mostly immunonegative nuclei of tumoral B lym-
phocytes). Examination of the lymphoma samples leads to
score the number of regulatory T-cells in the cancer tissue,
what allows estimating this specific organism’s immune
response to this type of cancer.
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In case of automated evaluation of tissue samples, the
image acquisition should be done. Because of chosen
microscope and camera settings: white balance, bright-
ness, contrast and inherent inhomogeneity in light dis-
tribution, as well as some obstacles in the light path and
noise added by microscope and camera [31], variability
in nuclei appearance increases. Experimentally collected
images have been acquired via a brightfield microscope
(Leica DM LB2 upright light microscope, Leica Microsys-
tems Wetzlar GmbH, Wetzlar, Germany), with 40x plane-
apochromatic objective of numerical aperture 0,63. 60
images captured by the experienced pathologist from 60
areas of various complexity of the several samples have
been collected in Tortosa hospital. 5 images, randomly
chosen from the experimental data, have been used as the
models to construct their synthetic counterparts.

The synthesized artificial images
To compare results of any segmentation methods, the
exact position of the boundary of objects should be
known. Information of the nuclei position is available for
artificial images, which are constructed via the simulation
of the cells’ population.
The process of artificial image construction is pro-

posed as follows: random generator chooses the posi-
tion of brown and blue objects (immunopositive and
immunonegative cells’ nuclei) in image plane according
to the founded probability distribution of their shape
and size. These distributions are estimated using collec-
tion of experimentally acquired images. The number of
both types of objects, colour tones, texture of objects
and background are taken from experimentally collected
counterpart image as samples and numbers characteris-
tic for the particular image. Spots of the clean background
are captured to the synthetic image background layer and
enlarged to form continues layer on which objects layer
are located. Synthesis of objects layers is done using the
adjusted version of SIMCEP software and Camera Raw 4.1
module of Photoshop CS5.
The SIMCEP, developed by Lehmussola and co-workers

[19,20], is available via internet. The software is dedi-
cated to synthesize the full colour fluorescent microscopic
images of nuclei or cells’ culture. For the needs of this
paper it has been adjusted to simulate images from the
transmission light microscopy. The core of SIMCEP sys-
tem, the generator of nuclei according to distribution of
their shape and size, the template generation, the texture
constructor and microscope and camera signal degrada-
tion module have been used, while problems with the
specific background characteristics have been solved in
Photoshop.
Five experimentally acquired images of lymphoma

tissue samples become the models of five artificial
images, constructed as the RGB 24-bits colour synthetic

microscopic images stored in uncompressed tif files. The
artificial image presented in Figure 3 (top-left) has been
synthesized based on the model image, presented in
Figure 1 (top-left), using the template of the immunoposi-
tive cell’s nucleus position and size presented in the image
in Figure 3 (bottom-left). To compare synthetic image
and its counterpart image characteristic full images are
presented in Figure 3 (top-left) and Figure 1 (top-left)
respectively while magnified fragments of both images are
presented in Figure 3 (top-right) to show details in object
and background characteristics. Also, Table 3 with results
of statistical comparison is provided.
The number of brown, marked nuclei are adjusted to the

particular experimentally collected image and the tem-
plates of all nuclei location generated using SIMCEP are
presented: (1) in Figure 3 (bottom-left) - immunpositive
in the form of template and (2) in Figure 3 (bottom-
right) - immunonegative in the form of the textured by
Perlin noise map. The colours are separated form the
immunopositive and immunonegative nuclei and from
the background of the counterpart image after the reduc-
tion of noise and chromatic aberration in Camera Raw.
All layers (background layer, brown objects of interest
layer and blue nuclei layer) are put together in Photoshop.
Each step of artificial image signal degradation, typical for
the microscope and camera technical limitations, such as
noise, vignetting and blurring, are simulated by the SIM-
CEP software, except of the chromatic aberration added
in Camera Raw.

The results of the adaptive thresholdmethod
comparison
All chosen adaptive threshold methods are applied to
three types of images calculated based on full colour
synthetic image (see Figure 4 top-left image):

• B channel of RGB colour image in Figure 4
(bottom-left),

• monochromatic image calculated accordingly to the
presented earlier equation as brown component
extracted from all RGB channels in Figure 4
(bottom-right),

• brown part of image obtained by colour
deconvolution with three colours: blue, brown and
the rest called the third component in Figure 4
(top-right).

5 artificial images (from A to E) segmentation results
for all objects in image (without rejection of the objects
touching image border) are presented as number of found
objects, the sensitivity, the specificity and four coefficients
of similarity in Tables 4, 5 and 6. In Table 4 are pre-
sented results for monochromatic images constituted as
B-channel, Table 5 presents results for monochromatic
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Figure 3 Synthesized artificial image. The artificial image (top-left) constructed as counterpart of image shown in Figure 1; enlarged fragment of
experimentally collected image compared to the artificial image (top-right); the template of brown objects (bottom-left); the blue objects template
with added Perlin texture (bottom-right).

images constituted by deconvolution and Table 6 presents
results for monochromatic images constituted as brown
color extracted from RGB channels. These tables show
that results for each artificial image are close for each
method of segmentation applied to particular image. Gen-
erally the best results are those of segmentation applied to
brown component after colour deconvolution, the mean
and the standard deviation of the value of the number of
found objects calculated as difference between the num-
ber of found objects and the number of ’true’ objects
in template for all segmentation methods is -0.2±0.6
while 2.3±6.9 for monochromatic image with brown color
extracted from RGB called ’brown channel’ and 6.0±13.9

for the blue channel fromRGB. Themean of the sensitivity
calculated for all segmentationmethods is 0.9264±0.0611,
0.8366±0.1571, 0.9432±0.0764 respectively whilemean of
the specificity calculated in this data are 0.9981±0.0035,
0.9858±0.0264, 0.9886±0.0235. So 5 artificial images are
similar one to each other and all objects in all images can
be treated as homogeneous population of tested objects.
The next step of comparison and evaluation concerns

rather methods of adaptive threshold so it have been done
on the level of single object (not single image). Because
objects that touch borders are segmented with holes or
cavities what cause that in most cases these object disap-
pear during the step of size filtering in further evaluation

Table 3 Objects characteristics

Image Area Max radius Min radius Per area (obj./total)

Artificial Experimental Artificial Experimental Artificial Experimental Artificial Experimental

A 1681 ± 426 1060 ± 413 27, 4 ± 1, 4 23, 3 ± 5, 0 17, 4 ± 3, 9 12, 9 ± 3, 2 0, 0017 ± 0, 0004 0, 0011 ± 0, 0004

B 1922 ± 166 953 ± 406 27, 9 ± 1, 3 23, 5 ± 5, 9 20, 7 ± 1, 8 11, 7 ± 3, 4 0, 0019 ± 0, 0002 0, 0009 ± 0, 0004

C 1867 ± 256 1352 ± 358 28, 0 ± 1, 2 27, 2 ± 4, 4 20, 2 ± 2, 8 14, 1 ± 2, 6 0, 0019 ± 0, 0003 0, 0014 ± 0, 0004

D 2047 ± 150 1078 ± 586 29, 0 ± 1, 0 24, 4 ± 6, 0 21, 2 ± 1, 4 11, 6 ± 4, 0 0, 0020 ± 0, 0002 0, 0011 ± 0, 0006

E 1892 ± 211 892 ± 463 27, 8 ± 1, 0 21, 8 ± 6, 0 20, 7 ± 2, 5 9, 5 ± 4, 0 0, 0019 ± 0, 0002 0, 0009 ± 0, 0005

Characteristics of objects of interest (brown spots) and its distribution in experimentally collected (right column) and synthesized (left column) images.
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Figure 4 Artificial image and three types of images calculated based on full colour image. The artificial image (bottom-left) constructed as
described in article and its B-channel of RGB (bottom-right), its “brown” axis (top-right) and its brown map after colour deconvolution (top-left).

it was taking in to account only these objects which do
not touching image border. As new designed method will
be applied to the virtual slides which will be analysed by
parallel algorithms dealing with images which are frag-
ments of virtual slides selected with covering margins so
the rejection of objects touching image border would be
compensate on the level of results connection.
The evaluation of the segmentation results of single

object is presented as B-A plots for such objects’ fea-
tures as area of object, roundness, eccentricity and so. The
comparison of objects’ area in pixels for all except one
segmentation methods (for five methods) calculated for
each of 3 types of monochromatic images collecting vari-
ous information about brown colour from five true colour
artificial images are presented in Figure 5A-I. The Yasuda
method was excluded from presentation because of its
performance; it does not select certain fraction of object
and at the same time it selects essential fraction of false
positive objects for all types of images (for blue channel
103, for brown colour 63, for results of colour deconvo-
lution only 2) so its plots are not presented in the paper.
Some of the plots in Figure 5 (A, B, C, D, G and H) con-
sist of about 70 non-touching image border objects from
5 synthetic images, while the others (E, F and I) present
combined plots showing distinguishable by colours 3 or 4

methods’ results together. In Figure 5 and Figure 6 objects
segmented by the Niblack method are presented in red, by
the Sauvola method in blue, the Bernsen method in green,
the White method in black and the Palumbo method in
yellow.
It is visible in Figure 5 that results of almost all meth-

ods applied to images after colour deconvolution (A, B,
C, F) are better than applied to blue channel of RGB (G,
H, I) and to the brown component extracted from all
channels of RGB (D, E); the latter seems to be the worst.
Generally, it is visible that some B-A plots of area compar-
ison between template objects and detected objects show
systematic under-segmentation of area. Bernsen method
(Figure 5A) and Niblack, Palumbo, and White methods
(Figure 5F) applied to images after colour deconvolu-
tion and White method applied to brown component
monochromatic image (Figure 5D) and to blue channel
of RGB (Figure 5H) shows that there is a bias in the
segmented object area. This bias is visible as objects’
area decrease in comparison to the corresponding tem-
plate object area but all these method are accurate and
precise in objects number. For the Bernsen method accu-
rate and precise both are equal 1 while for the modified
Sauvolamethod are equal 1 and 0.9722 respectively. At the
same time the size of object detected by: Sauvola method
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Table 4 The results of adaptive threshold comparison computed on channel BLUE (channel BLUE from RGB)

Image Method # objects in Segmented objects Sensitivity Specificity rD rJ rSS rRT Mean ± σ

the template (filtered by size) of columns 5 ÷ 10

A

Hyb. Niblack 8 8 0, 9212 0, 9998 0, 9527 0, 9097 0, 8344 0, 9975 0, 9359 ± 0, 0622

Hyb. Sauvola 8 9 0, 9443 0, 9983 0, 9127 0, 8395 0, 7234 0, 9952 0, 9022 ± 0, 1055

White 8 5 0, 6461 1, 0000 0, 7850 0, 6461 0, 4772 0, 9905 0, 7575 ± 0, 2085

Bernsen 8 8 0, 9447 0, 9995 0, 9546 0, 9132 0, 8403 0, 9976 0, 9417 ± 0, 0596

Palumbo 8 46 0, 8632 0, 9499 0, 3116 0, 1846 0, 1017 0, 9024 0, 5522 ± 0, 3933

Yasauda 8 64 0, 9981 0, 8954 0, 2063 0, 1150 0, 0610 0, 8128 0, 5148 ± 0, 4308

B

Hyb. Niblack 34 34 0, 9739 0, 9985 0, 9765 0, 9540 0, 9121 0, 9939 0, 9681 ± 0, 0317

Hyb. Sauvola 34 34 0, 9917 0, 9957 0, 9658 0, 9339 0, 8759 0, 9909 0, 9590 ± 0, 0469

White 34 34 0, 8905 1, 0000 0, 9421 0, 8905 0, 8026 0, 9858 0, 9186 ± 0, 0731

Bernsen 34 34 0, 9842 0, 9980 0, 9782 0, 9573 0, 9181 0, 9943 0, 9717 ± 0, 0299

Palumbo 34 41 0, 9541 0, 9883 0, 8992 0, 8169 0, 6905 0, 9724 0, 8869 ± 0, 1147

Yasauda 34 46 0, 9993 0, 9720 0, 8328 0, 7135 0, 5547 0, 9489 0, 8369 ± 0, 1744

C

Hyb. Niblack 15 15 0, 9876 0, 9997 0, 9893 0, 9788 0, 9584 0, 9988 0, 9854 ± 0, 0153

Hyb. Sauvola 15 16 0, 9929 0, 9968 0, 9440 0, 8940 0, 8083 0, 9934 0, 9382 ± 0, 0753

White 15 14 0, 8392 1, 0000 0, 9126 0, 8392 0, 7230 0, 9910 0, 8842 ± 0, 1055

Bernsen 15 15 0, 9873 0, 9997 0, 9883 0, 9770 0, 9550 0, 9987 0, 9843 ± 0, 0166

Palumbo 15 14 0, 9280 0, 9989 0, 9448 0, 8953 0, 8105 0, 9939 0, 9286 ± 0, 0701

Yasauda 15 18 0, 9998 0, 9887 0, 8354 0, 7173 0, 5592 0, 9782 0, 8464 ± 0, 1791

D

Hyb. Niblack 13 13 0, 9641 0, 9989 0, 9622 0, 9272 0, 8644 0, 9960 0, 9521 ± 0, 0504

Hyb. Sauvola 13 13 0, 9920 0, 9977 0, 9549 0, 9138 0, 8412 0, 9950 0, 9491 ± 0, 0620

White 13 13 0, 8330 1, 0000 0, 9088 0, 8328 0, 7136 0, 9911 0, 8799 ± 0, 1093

Bernsen 13 13 0, 9753 0, 9994 0, 9761 0, 9532 0, 9107 0, 9975 0, 9687 ± 0, 0331

Palumbo 13 15 0, 9419 0, 9970 0, 9187 0, 8497 0, 7386 0, 9912 0, 9062 ± 0, 0982

Yasauda 13 23 0, 9987 0, 9776 0, 7090 0, 5492 0, 3785 0, 9573 0, 7617 ± 0, 2592

E

Hyb. Niblack 21 21 0, 9857 0, 9995 0, 9863 0, 9730 0, 9475 0, 9978 0, 9816 ± 0, 0193

Hyb. Sauvola 21 23 0, 9937 0, 9935 0, 9245 0, 8595 0, 7537 0, 9872 0, 9187 ± 0, 0966

White 21 20 0, 8386 1, 0000 0, 9122 0, 8386 0, 7220 0, 9873 0, 8831 ± 0, 1051

Bernsen 21 21 0, 9871 0, 9993 0, 9854 0, 9711 0, 9439 0, 9977 0, 9807 ± 0, 0207

Palumbo 21 34 0, 9422 0, 9824 0, 7958 0, 6608 0, 4934 0, 9623 0, 8061 ± 0, 1965

Yasauda 21 61 0, 9975 0, 9332 0, 5523 0, 3815 0, 2357 0, 8793 0, 6633 ± 0, 3180
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Table 5 The results of adaptive threshold comparison computed on brown colour images after colour deconvolution of RGB image

Image Method # objects in Segmented objects Sensitivity Specificity rD rJ rSS rRT Mean ± σ

the template (filtered by size) of columns 5 ÷ 10

A

Hyb. Niblack 8 8 0, 9535 0, 9997 0, 9645 0, 9315 0, 8718 0, 9981 0, 9532 ± 0, 0478

Hyb. Sauvola 8 8 0, 9746 0, 9994 0, 9646 0, 9315 0, 8719 0, 9981 0, 9567 ± 0, 0485

White 8 7 0, 7938 1, 0000 0, 8851 0, 7938 0, 6582 0, 9945 0, 8542 ± 0, 1324

Bernsen 8 8 0, 9649 0, 9997 0, 9702 0, 9421 0, 8905 0, 9984 0, 9609 ± 0, 0408

Palumbo 8 8 0, 9163 0, 9995 0, 9373 0, 8820 0, 7889 0, 9967 0, 9201 ± 0, 0789

Yasauda 8 8 0, 9958 0, 9839 0, 6270 0, 4567 0, 2959 0, 9686 0, 7213 ± 0, 3051

B

Hyb. Niblack 34 34 0, 9628 0, 9999 0, 9802 0, 9612 0, 9252 0, 9949 0, 9707 ± 0, 0274

Hyb. Sauvola 34 35 0, 9805 0, 9977 0, 9740 0, 9493 0, 9034 0, 9932 0, 9663 ± 0, 0352

White 34 34 0, 8828 1, 0000 0, 9378 0, 8828 0, 7902 0, 9848 0, 9131 ± 0, 0778

Bernsen 34 34 0, 9648 0, 9999 0, 9814 0, 9634 0, 9294 0, 9952 0, 9724 ± 0, 0259

Palumbo 34 34 0, 9445 0, 9982 0, 9586 0, 9206 0, 8528 0, 9894 0, 9440 ± 0, 0531

Yasauda 34 32 0, 9984 0, 9912 0, 9400 0, 8867 0, 7965 0, 9835 0, 9327 ± 0, 0788

C

Hyb. Niblack 15 15 0, 9378 0, 9990 0, 9512 0, 9070 0, 8298 0, 9946 0, 9366 ± 0, 0629

Hyb. Sauvola 15 16 0, 9912 0, 9983 0, 9671 0, 9362 0, 8801 0, 9962 0, 9615 ± 0, 0463

White 15 14 0, 8267 1, 0000 0, 9051 0, 8267 0, 7046 0, 9903 0, 8756 ± 0, 1127

Bernsen 15 14 0, 9196 1, 0000 0, 9580 0, 9193 0, 8507 0, 9955 0, 9405 ± 0, 0563

Palumbo 15 14 0, 9149 0, 9996 0, 9489 0, 9028 0, 8228 0, 9945 0, 9306 ± 0, 0661

Yasauda 15 15 0, 9995 0, 9939 0, 9046 0, 8258 0, 7032 0, 9883 0, 9025 ± 0, 1189

D

Hyb. Niblack 13 13 0, 8982 0, 9994 0, 9355 0, 8787 0, 7837 0, 9934 0, 9148 ± 0, 0807

Hyb. Sauvola 13 13 0, 9228 0, 9990 0, 9421 0, 8906 0, 8028 0, 9940 0, 9252 ± 0, 0730

White 13 13 0, 8047 1, 0000 0, 8912 0, 8037 0, 6718 0, 9896 0, 8602 ± 0, 1257

Bernsen 13 13 0, 9019 0, 9995 0, 9390 0, 8850 0, 7936 0, 9938 0, 9188 ± 0, 0770

Palumbo 13 13 0, 8788 0, 9994 0, 9252 0, 8609 0, 7557 0, 9925 0, 9021 ± 0, 0915

Yasauda 13 12 0, 9469 0, 9941 0, 8756 0, 7787 0, 6376 0, 9858 0, 8698 ± 0, 1394

E

Hyb. Niblack 21 21 0, 9439 1, 0000 0, 9710 0, 9436 0, 8933 0, 9955 0, 9579 ± 0, 0398

Hyb. Sauvola 21 21 0, 9705 0, 9995 0, 9789 0, 9587 0, 9206 0, 9967 0, 9708 ± 0, 0291

White 21 20 0, 7808 1, 0000 0, 8769 0, 7808 0, 6404 0, 9827 0, 8436 ± 0, 1372

Bernsen 21 21 0, 9373 1, 0000 0, 9676 0, 9373 0, 8820 0, 9950 0, 9532 ± 0, 0441

Palumbo 21 20 0, 8906 0, 9997 0, 9381 0, 8835 0, 7913 0, 9907 0, 9156 ± 0, 0779

Yasauda 21 21 0, 9945 0, 9939 0, 9288 0, 8670 0, 7652 0, 9880 0, 9229 ± 0, 0921
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Table 6 The results of adaptive threshold comparison computed on the “brown channel” calculated from RGB image

Image Method # objects in Segmented objects Sensitivity Specificity rD rJ rSS rRT Mean ± σ

the template (filtered by size) of columns 5 ÷ 10

A

Hyb. Niblack 8 7 0, 7310 0, 9999 0, 8421 0, 7272 0, 5714 0, 9927 0, 8107 ± 0, 1676

Hyb. Sauvola 8 7 0, 7317 0, 9999 0, 8405 0, 7248 0, 5684 0, 9926 0, 8096 ± 0, 1686

White 8 8 0, 9351 1, 0000 0, 9664 0, 9349 0, 8778 0, 9983 0, 9521 ± 0, 0463

Bernsen 8 7 0, 7317 0, 9968 0, 7431 0, 5912 0, 4196 0, 9865 0, 7448 ± 0, 2242

Palumbo 8 12 0, 9666 0, 9793 0, 5548 0, 3839 0, 2375 0, 9591 0, 6802 ± 0, 3313

Yasauda 8 20 0, 9994 0, 9255 0, 2676 0, 1545 0, 0837 0, 8630 0, 5490 ± 0, 4230

B

Hyb. Niblack 34 34 0, 8932 0, 9988 0, 9353 0, 8784 0, 7831 0, 9840 0, 9121 ± 0, 0792

Hyb. Sauvola 34 38 0, 8967 0, 9926 0, 8959 0, 8114 0, 6827 0, 9731 0, 8754 ± 0, 1144

White 34 34 0, 9414 0, 9997 0, 9679 0, 9379 0, 8830 0, 9919 0, 9536 ± 0, 0429

Bernsen 34 33 0, 8983 0, 9813 0, 8294 0, 7086 0, 5487 0, 9529 0, 8198 ± 0, 1649

Palumbo 34 47 0, 9731 0, 9569 0, 7515 0, 6020 0, 4306 0, 9193 0, 7722 ± 0, 2201

Yasauda 34 53 0, 9824 0, 8919 0, 5568 0, 3858 0, 2390 0, 8146 0, 6451 ± 0, 2978

C

Hyb. Niblack 15 13 0, 6038 1, 0000 0, 7529 0, 6038 0, 4324 0, 9781 0, 7285 ± 0, 2260

Hyb. Sauvola 15 13 0, 6038 1, 0000 0, 7529 0, 6038 0, 4324 0, 9781 0, 7285 ± 0, 2260

White 15 14 0, 8791 1, 0000 0, 9357 0, 8791 0, 7843 0, 9933 0, 9119 ± 0, 0817

Bernsen 15 13 0, 6038 1, 0000 0, 7529 0, 6038 0, 4324 0, 9781 0, 7285 ± 0, 2260

Palumbo 15 17 0, 9758 0, 9944 0, 8992 0, 8168 0, 6904 0, 9878 0, 8941 ± 0, 1208

Yasauda 15 24 1, 0000 0, 9718 0, 6715 0, 5055 0, 3382 0, 9467 0, 7390 ± 0, 2775

D

Hyb. Niblack 13 12 0, 7979 0, 9993 0, 8757 0, 7789 0, 6379 0, 9880 0, 8463 ± 0, 1376

Hyb. Sauvola 13 12 0, 8120 0, 9985 0, 8696 0, 7694 0, 6252 0, 9871 0, 8436 ± 0, 1411

White 13 13 0, 8960 0, 9997 0, 9395 0, 8859 0, 7951 0, 9939 0, 9183 ± 0, 0768

Bernsen 13 12 0, 8109 0, 9989 0, 8758 0, 7791 0, 6381 0, 9878 0, 8485 ± 0, 1366

Palumbo 13 16 0, 9605 0, 9948 0, 8937 0, 8078 0, 6776 0, 9879 0, 8870 ± 0, 1244

Yasauda 13 21 0, 9940 0, 9744 0, 6788 0, 5137 0, 3457 0, 9511 0, 7430 ± 0, 2737

E

Hyb. Niblack 21 15 0, 5377 0, 9997 0, 6959 0, 5336 0, 3639 0, 9633 0, 6823 ± 0, 2547

Hyb. Sauvola 21 15 0, 5401 0, 9992 0, 6931 0, 5303 0, 3608 0, 9627 0, 6810 ± 0, 2553

White 21 21 0, 8987 1, 0000 0, 9466 0, 8986 0, 8159 0, 9920 0, 9253 ± 0, 0691

Bernsen 21 15 0, 5405 0, 9982 0, 6826 0, 5182 0, 3497 0, 9608 0, 6750 ± 0, 2588

Palumbo 21 26 0, 9665 0, 9908 0, 8832 0, 7909 0, 6541 0, 9799 0, 8776 ± 0, 1332

Yasauda 21 44 0, 9970 0, 9313 0, 5452 0, 3748 0, 2306 0, 8760 0, 6591 ± 0, 3202
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Figure 5 The Bland-Altman plots of area feature. The Bland-Altman plots of area feature. (A) Bernsen method of segmentation applied to image
after colour deconvolution; (B) Sauvola method of segmentation applied to image after colour deconvolution; (C) Sauvola method of
segmentation applied to image after colour deconvolution, presentation of true positive objects only; (D)White method of segmentation applied
to ‘brown channel’; (E) Niblack, Sauvola, Bernsen and Palumbo method of segmentation applied to ‘brown channel’; (F) Niblack, White and
Palumbo method of segmentation applied to image after colour deconvolution; (G) Bernsen method of segmentation applied to blue channel of
RGB; (H)White method of segmentation applied to blue channel of RGB; (I) Niblack, Sauvola and Palumbo method of segmentation applied to blue
channel of RGB. [colour representation: Niblack - red, Sauvola - blue, Bernsen - green, White - black and Palumbo - yellow].

applied to image after colour deconvolution (Figure 5B),
Bernsen method applied to the blue channel from RGB,
Palumbo method also applied to the blue channel and
Yasuda method applied to all three types of monochro-
matic images (not presented in paper) seems not biased
in objects’ area detection. But some of methods men-
tioned above in various degree detect extra objects in
background (false positive object, FP). For the Sauvola
method the number of FP objects is minimal (2 from 72)
while for the Yasuda method these numbers are vast as it
was mention above. These results are the reason that the
Yasudamethod is excluded from further consideration. To
find method which is accurate enough in area detection
the comparison as B-A plots, between area of the seg-
mented and the ‘true’ object from template, is done. The

difference between area of the segmented and the ‘true’
object from template for the Sauvola method applied to
the result of image deconvolution for all selected object
(Figure 5B) are ranged between -100 to 1400 pixels and for
true positive objects only (Figure 5C) between ±80 pix-
els while the Bernsen method applied to blue channel of
RGB (Figure 5G) and the Palumbo method (yellow circles
in Figure 5F) applied to blue channel of RGB are ranged in
±130 pixels and ±170 pixels. So the error in area detec-
tion is the lowest if the objects are selected by the Sauvola
method but only if false positive object are excluded based
on the other information.
To reject extra objects selected by the Sauvola method

two sources of information could be used: - from biased in
object size segmentation method which produce accurate
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Figure 6 The Bland-Altman plots of shape features. The Bland-Altman plots of shape features. (A) solidity, Bernsen method of segmentation on
image after colour deconvolution; (B) roundness, Bernsen method of segmentation on image after colour deconvolution; (C) perimeter, Bernsen
method of segmentation on image after colour deconvolution; (D) solidity, White and Bernsen method of segmentation applied to blue channel of
RGB; (E) roundness, White and Bernsen method of segmentation applied to blue channel of RGB; (F) perimeter, White and Bernsen method of
segmentation applied to blue channel of RGB; (G) solidity, Sauvola method of segmentation on image after colour deconvolution; (H) roundness,
Sauvola method of segmentation on image after colour deconvolution; (I) perimeter, Sauvola method of segmentation on image after colour
deconvolution. [colour representation: Sauvola - blue, Bernsen - green and White - black].

and precise result in number of detected objects so these
results can be used to mark true positive object among
the Sauvola method results or - from objects found by
the Sauvola method can be filtered by any or by all of
described below shape coefficients classifier.
To find segmentation method that gives precise num-

ber of detected objects and at the same time decrease
objects’ size by homogeneous area rejection around
objects’ periphery, only methods applied to image after
colour deconvolution (Figure 5A,F) or blue channel
(Figure 5G,H,I) should be taken into consideration. B-
A plots for the area feature for monochromatic image
from brown color extracted from RGB (Figure 5E) shows
rather biased results (from -100 to -350 pixels) because

of presence of cavities and holes in large fraction of
segmented objects. So the following three methods: the
Bernsen method applied to the results of colour deconvo-
lution (Figure 5A) and to blue channel of RGB (Figure 5G)
and theWhitemethod applied to blue channel (Figure 5H)
are taken into consideration.
The choice among previously mentioned methods

and/or among the shape determined object filtration are
examined based on B-A plots comparing shape features:
perimeter, solidity, roundness and axis ratio, and two
features which describe relative position (co-localization)
of segmented and template objects: eccentricity and quasi
B-A plots described further in this section. These quasi
B-A plots show distribution of erroneously detected area



Korzynska et al. Diagnostic Pathology 2013, 8:48 Page 16 of 21
http://www.diagnosticpathology.org/content/8/1/48

(FP) as the function of the distance between centroids of
selected and template objects. They have been calculated
for all methods (6), all types of monochromatic image with
various colour information (3) and all features (6), but only
some of them, these which have impact in conclusions, are
shown in Figure 6 and Figure 7.
B-A plots in Figure 6 present shape features (except

axis ratio which results are similar to presented fea-
tures): - solidity which shows if increase of objects’ size
to achieve convex area is homogeneously distributed
(Figure 6A,D,G), - roundness which shows if ratio of area
to squared perimeter is independent from objects’ round-
ness (Figure 6B,E,F) and - perimeter length which shows if
the changes in perimeter length compared to the template
objects perimeter are independent from perimeter length
(Figure 6C,F,I). All these features are presented for the

Bernsen method applied to the image after colour decon-
volution (Figure 6A,B,C) in the context of the plots of sum
of the Bernsen and the White methods applied to blue
channel of RGB image (Figure 6D,E,F). The first method
plots present much more homogeneous distribution than
the second group of plots which are presented below
(respectively Figure 6D,E,F). These three shape features
plots proof that error in object area detection (decrease
of object size described above) for the Bernsen method
applied to image after colour deconvolution is homoge-
neously distributed around object and do not affect its
shape. Plots of B-A presented in Figure 6 (G, H, I) present
also all previously described shapes coefficient for the
Sauvola method applied to the result of image deconvo-
lution. The values of false positive objects appear to be
drastically different than the values of these coefficients

A

0.2 0.3 0.4 0.5 0.6 0.7
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Mean of Eccentricity

D
iff

er
en

ce
 b

et
w

ee
n 

E
cc

en
tr

ic
ity

B

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Centroid displacement

(F
P

+
F

N
)/

te
m

pl
at

eA
re

a

C

0.2 0.3 0.4 0.5 0.6 0.7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Mean of Eccentricity

D
iff

er
en

ce
 b

et
w

ee
n 

E
cc

en
tr

ic
ity

D

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Centroid displacement

(F
P

+
F

N
)/

te
m

pl
at

eA
re

a

Figure 7 The co-localization features. The co-localization features: eccentricity (A, C) and defined by authors quasi B-A plots (B, D).
(A) Bland-Altman plot of eccentricity, Bernsen method of segmentation on image after colour deconvolution; (B) quasi B-A plot (described in
section “The methods of comparison of the chosen segmentation methods results”) Bernsen method of segmentation on image after colour
deconvolution; (C) Bland-Altman plot of eccentricity, Sauvola method of segmentation on image after colour deconvolution; (D) quasi B-A plot,
Sauvola method of segmentation on image after colour deconvolution.
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for true positive objects. Based on this knowledge it is pos-
sible to form criteria (classifier) of false positive objects
rejection from the set of results. So the Bernsen and
the Souvola methods applied to result of deconvolution
and shape coefficients (mainly solidity or perimeter) are
the best candidates to be used in new hybrid method
construction but only if the Bernsen method results of
true positive objects indicate part of the Souvola method
results.
B-A plots in Figure 7 presents co-localization features:

eccentricity (Figure 7A,C) and defined by authors new
coefficient (Figure 7B,D) which shows if the distance
between two centroids is correlated with the ratio of the
sum of false negative and false positive pixels divided by
true positive pixels. Eccentricity defined as the ratio of the
distance between the foci of the ellipse and its major axis
length is calculated for ellipse that has the same second-
moments as an object. Homogeneous distribution of error
without any bias both for the Sauvola and the Bernsen
method for eccentricity is achieved. It shows that erro-
neously detected area in both cases does not cause sig-
nificant changes in ellipse which is an estimate of object.
As this information do not tell us if errors in detected
area moves centroid position more than within circle of
reduce equal 1 pixel the new B-A like plots have been
analysed. These plots are presented in Figure 7 (B, D) and
they show that fraction of object which in consequence
of error in peripheral part detection moves centroid of
segmented object in comparison to the corresponding
template object of distance between 1 and 2.5 pixels is less
than 20% of objects (for the Bernsen method 12 objects
from 70 but for the Sauvola method 14 objects from
72). So in most results of the Bernsen and the Souvola
methods the error in area detection is homogeneously
located on peripheral part of object if we applied these
method to the monochromatic image after colour decon-
volution. It proofs that the Brensen method results can
be used as true positive objects markers (particularly if
they are eroded using mathematical morphology opera-
tion [49,50]) and these markers should indicate inside of
some of the Sauvola method results; all objects which are
not marked are FP objects and can be rejected.
Figure 8 presents segmentation results calculated for the

chosen fragment of image shown in Figure 3 (top-left)
more detail for all types of the monochromatic images: in
the first raw for B-channel, in the second raw for the result
of deconvolution and the bottom raw for the results of
brown component extraction. These results are presented
as the various colour outlines of the detected objects. In
left column of Figure 8 there are results of four methods:
(1) Niblack method, in red colour, (2) Yasuda method, in
green colour, (3) Palumbo method, in gray colour, and (4)
Sauvola method, in blue colour. While in the right column
there are only two: (1) White method, in red colour, and

(2) Bernsen method, in green colour. Other colours which
appear in image arising by the low of primary colour
adding only for the overlapping outlines: yellow colour as
result of green colour added to red colour, magenta colour
as result of blue colour added to red colour, cyan colour
as result of green colour added to red colour and white
colour as result of adding all tree colours. The left part
of each image is imposed on the template, while the right
part, without the template. Both parts show the mutual
localization of the detected lines relative to each other and
to the template objects. Visual evaluation of the Figure 8
shows that template cover almost all detected objects out-
lines because detected object are smaller o just in size
of template object so the difference of particular method
results can be observed in right part of each image. All
white pixels in left parts of all images and all yellow pixels
in right parts shows agreement in selected outlines while
the lines in other colours shows distance between results.
These distances are relatively small for results of the seg-
mentation performed with monochromatic image which
is results of deconvolution and which is B-channel image
(Figure 8A-D). There is presented only one FP object
segmented by the Sauvola method in Figure 8C while
in Figure 8A there are much more FP objects (in green
colour) segmented by the Yasuda method. So all method
of results comparison strengths our belief that the process
of colour deconvolution produce monochromatic image
with best performance of brown colour component.

Discussion and conclusions
The investigation presented in this paper has two aims:
(1) to compare the chosen adaptive threshold method
on immunohistochemically stained lymphoma tissue
sections to collect the knowledge how to design the
new method based on the local thresholding method-
ology, and (2) to prove usefulness of creating artificial
images which simulate experimentally acquired micro-
scopic images used for the objective validation of image
processing methods. The first goal has been achieved
because results of all tested adaptive threshold methods
except for the Yasuda method appear to be good or very
good (accuracy from 0.9986 to 0. 9816 and precision from
1 to 0.6773 for respectively the Bernsen method and the
Palumbo method applied to B-channel and to the White
method applied to B-channel and for the Palumbomethod
applied to the result of the colour deconvolution) when
accuracy and precision are quantifying based on pixels
classification. The best accuracy and precision (respec-
tively 0.9945 and 1) is for the White method applied to
B-channel of RGB but this method decreases the size
of segmented objects and sometimes reject objects that
touches image edges. The accuracy and precision for both
chosen methods are 0.9892 and 0.9331 for the Sauvola
method and 0.9864 and 0.8454 for the Bernsen method
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Figure 8 Image segmentation results. The sub-images present overlapped results of adaptive threshold methods in the left column for: the
Niblack method (in red), the Sauvola method (in blue), the Yasuda method (in green) and the Palumbo method (in gray) and in the right column for:
the White method (in red) and the Bernsen method (in green). The top row (A and B) presents results calculated on B-channel of RGB, the middle
row (C and D) presents results calculated for the brown map after colour deconvolution while the bottom row (E and F) for the “brown axis” in RGB.
The other colours appearing in image should be identified according to the law of primary colour adding as overlapping outlines. The left part of
each sub-image is imposed on the template what causes that inside of object there is white colour while the right part, shows the mutual
localization of the detected lines on dark gray instead of black background.

calculating it from an area. But calculating it based on
the number of selected objects for the Bernsen method
accuracy and precision both are equal to 1 while for
the modified Sauvola method are equal 1 and 0.9722
respectively.
All tested methods produce results based on various

criteria but all uses the same size of the sliding window
of image processing algorithm around classified pixels (in
this investigation window size is 51x51 pixels because of
object size) and the same value of minimal contrast for
object and background (in this investigation Tc = 150):

• the Bernsen method uses only these two parameters
but it generally produces various threshold level
across image plane, adjusting it to the mean value of
two numbers: the maximum and the minimum of
intensity in window; if local contrast is bigger than Tc
the threshold value is settled on the level on locally
adjusted value if not the background is detected;

• the hybrid of Sauvola method classifies objects
according to description above using two other
parameters: k = −0.2 which introduce bias in
variance value and R = 128 which allows to
standardize variance value; this method also produce
locally adjusted threshold level according to mean
intensity value in window corrected by biased and
standardized variance; if local contrast is bigger than
Tc the threshold value is settled on the level on
locally adjusted value if not the background is
detected;

• the White method classifies object also according to
pixels mean intensity value inside window but
classifies it as belonging to the object if intensity of
analyzed pixel multiplied by bias parameter (in this
investigation bias = 2) is bigger than mean intensity
value calculated inside window, what is essential in
this method that threshold level is also locally
adjusted but local threshold value is dependent from



Korzynska et al. Diagnostic Pathology 2013, 8:48 Page 19 of 21
http://www.diagnosticpathology.org/content/8/1/48

mean intensity value in window and from chosen
constant bias.

The local threshold level in the White method is depen-
dent on bias which increase intensity of analysed pixel
causes that the method perform well in images with
high contrast between objects and background. The high-
est contrast is observed in blue channel monochromatic
image despite the fact that texture present in blue objects
locally disturbs this contrast. The other two methods are
dependent on mean intensity corrected by the variance
for the Sauvola method and on the half of intensity range
inside window for the Bernsen method what causes that
they are less dependent from the value of contrast but
rather dependent from lack of local contrast disturbance.
This is observed in monochromatic images after deconvo-
lution where texture of blue object is rejected and texture
in background is really weak. Both methods applying to
the images after colour deconvolution produce comple-
mentary results. It derives from the fact that the corrected
by standardized variance mean value of the intensity is
sensitive enough to detect less conduced brown colour
regions. It means that it can detect blurred edges of
objects and at the same time it detects gentle contrails
of stain deposits in the background while the half of the
intensity range cut all blurred fragments of objects and do
not detect stain deposits in the background. So it leads
to the conclusion that the new developed method should
take advantage from both the Bernsen and the Souvola
methods in precision and accuracy of object detection
and working synergistically it rejects all errors e.g. extra
objects.
The evaluation of performance of 6 adaptive thresh-

old methods, on three types of monochromatic images,
based on 5 true colour artificial images was done. So
the second aim, the verification of the thesis about use-
fulness of the artificial image synthesis method in the
image processing method evaluation and comparison,
also was achieved. The known and assumed location of
objects of interest in the template allows using the stan-
dard methods for the quality assessment, as specificity,
sensitivity and standard coefficients of similarity, preci-
sion and accuracy and Bland-Altman analysis which work
well in all comparative study. As the scientific and clinical
interest in quantifying brown objects in DAB&H stained
samples is evident the evaluation of the segmentation
results using artificial synthesized images allows gathering
huge amount of knowledge about image analysis effi-
ciency in the context of image characteristics. This knowl-
edge will be used during new method development in
future.
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