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Abstract 

Background Ameloblastoma (AME) is a benign odontogenic tumour of epithelial origin characterised by slow 
but aggressive growth, infiltration, and recurrence; it is capable of reaching large dimensions and invading adja-
cent structures. Stem cell research has proven to be significant in the sphere of tumour biology through these cells’ 
possible involvement in the aetiopathogenesis of this tumour.

Methods Immunohistochemistry was performed on AME, dentigerous cyst (DC), and dental follicle (DF) samples, 
and indirect immunofluorescence was performed on the AME-hTERT cell line to determine the expression of SALL4, 
LIN28A, and KLF4.

Results Expression of proteins related to cellular pluripotency was higher in AME cells than in DC and DF cells. The 
analysis revealed that the proteins in question were mainly expressed in the parenchyma of AME tissue samples 
and were detected in the nuclei of AME-hTERT cells.

Conclusions Stem cells may be related to the origin and progression of AME.
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Introduction
Ameloblastomas (AME) are odontogenic tumours of 
epithelial origin. Although classified as a form of benign 
tumour, AME is characterised by aggressiveness, an infil-
trative nature, and a high recurrence tendency. They can 
grow to large dimensions and invade adjacent structures, 
causing significant morbidity [1–3].

According to the most recent classification by the 
World Health Organisation (WHO), AME can be catego-
rised into three types: conventional, unicystic, and extra-
osseous/peripheral. Among these, conventional AME is 
the most common and most aggressive [4].

The current therapeutic options include both conserva-
tive and radical approaches [5]. Conservative treatments 
involve enucleation and curettage [1], which avoid rel-
evant facial deformities [5] but have recurrence rates of 
up to 55% [6]. More invasive treatments involve marginal 
resection, which is the method of choice, considering the 
high recurrence rates reported for AME [1]. However, 
this method can result in relapse rates of up to 15% in 
more aggressive AME types as well as significant facial 
deformities [7].

Although the causes of the aggressive biological behav-
iour and high rate of recurrence of this benign neoplasm 
are not fully understood, studies involving stem cells and 
their possible relationship with the aetiopathogenesis of 
neoplasms have been relevant in elucidating this behav-
iour [8–10].

Stem cells can perpetuate themselves through self-
renewal mechanisms and differentiate into cells in spe-
cific tissues. These mechanisms are like those that occur 
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in tumour cells and involve similar signalling pathways. 
Thus, both normal stem cells and tumorigenic cells have 
proliferative potential and the ability to give rise to new 
tissues called cancer stem cells [8].

Cancer stem cells proliferate uncontrollably, driving 
the formation and growth of tumors, generating hetero-
geneous malignant cells associated with recurrence and 
metastasis. It is believed that cancer cells can appropriate 
the self-renewal machinery that is normally expressed in 
normal stem cells [8].

It has been reported that AME cells originate from odon-
togenic stem cells located in the dental lamina [11] and that 
tumours are likely initiated in normal stem cells that con-
tain a perpetual minority of cancer stem cells [12, 13].

In this context, the SALL4 (Spalt-Like Transcription 
Factor 4), LIN28A (LIN28 homolog A), and KLF4 (Krup-
pel-like factor 4) proteins, which act as essential regula-
tors of pluripotency and embryonic self-renewal and can 
mediate tumour progression and differentiation, are rel-
evant biomarkers for the analysis of stem cells [14–16].

SALL4 is an essential transcription factor for the main-
tenance of self-renewal and pluripotency of embryonic 
stem cells that occurs in early embryonic development 
[14]. Its expression is downregulated after birth and 
is absent in most adult human tissues. Specifically, its 
expression in adult tissues is restricted to germ cells [17], 
except for human CD34+ haematopoietic stem cells [18]. 
However, its high expression and dysregulation have been 
demonstrated in several types of cancer [14], such as leu-
kemia, germ cell tumours, hepatocellular carcinoma, and 
lung cancer [19–24], where it acts as an oncogene and 
participates in the processes of initiation, development, 
and progression of cancer [14].

LIN28A is a highly conserved ribonucleic acid (RNA)-
binding protein that plays a key role in cell development 
and pluripotency by regulating the process of cell pro-
liferation and differentiation [25]. It is expressed in the 
embryos, stem cells, and embryonic carcinoma cells [26]. 
Its performance occurs both physiologically (i.e. through 
the renewal and differentiation of stem cells, tissue repair, 
and glucose metabolism) and pathologically, where high 
levels are correlated with advanced malignant tumours, 
poor prognosis, and increased risk of recurrence [26–28].

KLF4 is a transcription factor that regulates cellular 
processes of development, differentiation, proliferation, 
and apoptosis. Depending on the cell type, KLF4 acts as 
both a tumour suppressor and an oncogene [16]. Further-
more, KLF4 is involved in stem cell renewal and mainte-
nance of pluripotency [29, 30].

The protein–protein interaction network was ana-
lysed for SALL4, LIN28A, and KLF4 proteins using 
bioinformatics with the STRING (Search Tool  for 
Recurring Instances of Neighbouring  Genes) platform 

[31]. According to the STRING platform, a direct asso-
ciation among them was demonstrated in all interac-
tions obtained from the selected databases and was 
confirmed using text mining analysis. Interactions 
among LIN28A, KLF4, SALL4, and KLF4 were deter-
mined experimentally. Additionally, the platform 
demonstrated protein homology between SALL4 and 
KLF4, and computationally identified co-expression 
of LIN28A and SALL4 based on transcript-transcript 
interactions (see Fig. 1).

Understanding the molecular mechanisms underlying 
AME through the expression of stem cell biomarkers 
can help elucidate the role of these cells in the aeti-
opathogenesis of this tumour. Therefore, the present 
study aimed to evaluate the in situ and in vitro expres-
sion of stem cell markers SALL4, LIN28A, and KLF4 in 
AME. This is the first work to simultaneously investi-
gate these three proteins in this benign neoplasm. 

Methods
Ethical aspects
This study was approved by the Comitê de Ética em Pes-
quisa com Seres Humanos – Universidade Federal do Pará, 
Belém, Pará, Brazil, Committee Reference No.: 5.490.937.

Samples
For the in vitro study, the cell line derived from human 
AME, called AME-hTERT, established at the Cell Culture 

Fig. 1 Interaction Network of SALL4, LIN28 and KLF4 proteins 
obtained through the STRING platform. All observed interactions 
between proteins (edges connecting nodes) were obtained 
from selected databases (light blue line) and confirmed by text 
mining analysis (yellow line). LIN28A and KLF4 and SALL4 and KLF4 
interactions were determined experimentally (pink line). Protein 
homology was demonstrated between SALL4 and KLF4 (purple line), 
and coexpression between LIN28A and SALL4 was computationally 
observed from transcript–transcript interactions (black line)



Page 3 of 10de Albuquerque Dias et al. Diagnostic Pathology           (2023) 18:92  

Laboratory of the Faculty of Dentistry, Universidade Fed-
eral do Pará (UFPA), was used [32]. For the in situ study, 
21 cases of conventional AME, ten cases of dentigerous 
cysts (DC), and ten cases of dental follicles (DF) were col-
lected at the Laboratory of Pathological Anatomy and 
Immunohistochemistry of the Graduate Program in Den-
tistry, Universidade Federal do Pará, and Centro Univer-
sitário do Pará (CESUPA). In the in situ study, the cases 
of DC and DF were used as comparative samples, consid-
ering that DC and AME are benign odontogenic lesions 
but present with less aggressive behaviour and a low inci-
dence of recurrence. Meanwhile, DF is a tissue without 
pathological neoplastic changes of odontogenic origin.

Cell cultivation
The cell line derived from AME, established, and charac-
terised at the Laboratory of Cell Culture of the Graduate 
Program of the Universidade Federal do Pará (UFPA), 
was cultivated in DMEM/F-12 medium (Sigma Chemical 
Co., St. Louis, MO, USA), supplemented with 10% foe-
tal bovine serum (Gibco, Carlsbad, CA, USA), 1% peni-
cillin (Gibco®) and 0.1% antifungal (Gibco®). The cells 
were kept in an incubator at a temperature of 37ºC and 
a humid atmosphere containing 5%  CO2. Cell prolifera-
tion was observed daily using an inverted phase-contrast 
microscope (Axiovert 40 C – Zeiss) equipped with a cou-
pled camera (AxioCam MRc, Zeiss).

Immunohistochemistry
The immunohistochemistry technique used in the pre-
sent study was performed according to the following pro-
tocol. First, deparaffinization of the slides in xylene and 
hydration in decreasing alcohol concentrations (100%, 
90%, 80% and 70%) was conducted. Then endogenous 
peroxidases were blocked by immersing the slides in 3% 
 H2O2 to methanol at a 1:1 ratio for 30 min. Antigenic 
recovery was conducted in a Pascal pressure chamber 
(Dako Cytomation, Carpinteria, CA, USA) in a citrate 
buffer (pH 6.0) for 30 s with a temperature of 123°C and 
pressure of 13.5 psi. Finally, non-specific antibodies were 
blocked with 1% bovine serum albumin (BSA; Sigma-
Aldrich) in a phosphate-buffered saline solution for 1 h.

Incubation of primary antibodies for Anti-Sall4 (1:25, 
mouse, Santa Cruz Biotechnology, Santa Cruz, CA, USA) 
was conducted for 12–14 h (overnight) and for 1 h for 
the Anti-LIN-28 (1:30, mouse, Santa Cruz Biotechnology 
®) and Anti-GKLF (1:100, mouse, Santa Cruz Biotech-
nology®) in the AME, DC, and DF samples. Secondary 
antibodies were incubated with an Immunoprobe Plus 
detection system (Advanced Biosystems, San Francisco, 
CA, USA) for 30 min. Diaminobenzidine chromogen 
(ScyTek, Logan, UT, USA) was used. The slides were 

counterstained with haematoxylin (Sigma-Aldrich) and 
mounted using Permount (Fisher Scientific, Fair Lawn, 
NJ, USA). Testicular seminoma samples were used as 
positive controls. As a negative control, the primary anti-
body was replaced with BSA (Sigma-Aldrich) or non-
immune serum.

Immunohistochemical evaluation
The immunohistochemical (IHC) evaluation was per-
formed by measuring the area (μm) and fraction (%) of 
SALL4, LIN28A, and KLF4 and labelling in the AME, 
DC, and DF samples. Images were obtained using an Axi-
oscope A1 microscope (Zeiss®) equipped with an Axi-
oCam HRC colour CCD camera (Zeiss®) with a bright 
field. Five areas in each sample were selected based on 
the quantity and morphological preservation of the 
parenchyma. Images were acquired using a 40x objective. 
Areas of the tumour parenchyma were separated and 
segmented using the “IHC Image Analysis Toolbox” plug 
in (Jie Shu, Guoping Qiu and Mohammad Ilyas, https:// 
imagej. nih. gov/ ij/ plugi ns/ ihc- toolb ox/ index. html) using 
ImageJ (public domain software developed by Wayne 
Rasband (NIMH, National Institutes of Health, Bethesda, 
MD, USA; http:// rsbweb. nih. gov/ ij/). After segmenting 
the images, the area and diaminobenzidine (DAB) stain-
ing fraction were measured, and the immunostaining dif-
ferences found in AME, DC, and DF were analysed.

Indirect immunofluorescence
AME-hTERT cells were cultured on glass coverslips in 
24-well plates and subjected to indirect immunofluo-
rescence to observe the expression of SALL4, LIN28A, 
and KLF4. The technique involved the following steps: 
cell fixation in 2% paraformaldehyde for 10 min, wash-
ing with phosphate-buffered saline (PBS), permeabi-
lisation of the membrane with a 0.5% Triton X-100 
solution (Sigma®) for 15 min, wash with PBS, incubation 
in PBS/1% BSA for 30 min, and incubation with primary 
monoclonal antibodies diluted in PBS/BSA at 1% for 
a minimum of 12 h and a maximum of 18 h in a humid 
chamber at 4ºC. The primary antibodies used were Anti-
Sall4 (1:50, mouse, Santa Cruz Biotechnology®), Anti-
LIN-28 (1:50, mouse, Santa Cruz Biotechnology®), and 
anti-GKLF (1:50, mouse, Santa Cruz Biotechnology®). To 
detect the primary antibody, incubation was performed 
in a solution containing the secondary antibody conju-
gated to Alexa Fluor 488 (Invitrogen, Carlsbad, CA, USA) 
for 1 h in a humid and dark chamber at room tempera-
ture. Nuclei were stained with Hoechst 33258 (1: 2,000, 
Sigma) and cytoskeletons were stained with Alexa Fluor 
568 phalloidin (Life Technologies, Carlsbad, CA, USA). 
The coverslips were immersed in PBS and distilled water 
and mounted using the ProLong® Gold antifade reagent 

https://imagej.nih.gov/ij/plugins/ihc-toolbox/index.html
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(Invitrogen®). Next, the cells were analysed using a fluo-
rescence microscope (AxioScope.A1, Zeiss) equipped 
with a digital camera (AxiocamMRc, Zeiss). Images of 
the slides were obtained for the registration of immuno-
expression using a 40x objective. As a negative control, 
the primary antibody was replaced with a non-immune 
serum.

Statistical analysis
Data were analysed using GraphPad Prism 8 software 
(GraphPad Software Inc., San Diego, CA, USA). When 
parametric distribution was evidenced by the Shapiro-
Wilk test, differences between groups were evaluated by 
one-way analysis of variance (ANOVA) followed by Tuk-
ey’s post-hoc test. When a non-parametric distribution 
was evidenced by the Shapiro-Wilk test, the differences 
between groups were evaluated by the Kruskal-Wallis 
test, followed by Dunn’s post-test of multiple com-
parisons. A 95% confidence interval (CI) was assumed 
(α = 0.05).

Results
Demographical and clinical data, and histopathological 
typing of patients with AME
In the studied sample, the mean age was 37 years. Males 
represented 57% of the samples. The region of greatest 
involvement was the mandible, totalling 95% of the cases. 
As for the histological types, eight cases were of the fol-
licular type, eight of plexiform, three acanthomatous and 
two of granular cells (see Table 1).

Immunohistochemical staining for SALL4, LIN28a, 
and KLF4 in ameloblastoma, dentigerous cyst, and dental 
follicle
IHC staining for SALL4, LIN28A, and KLF4 was pre-
dominantly observed in the epithelial cells of the 
tumour islands (see Fig.  2). For SALL4, intense stain-
ing was observed in the tumour parenchyma in both 
the nucleus and cytoplasm of the cells, in the high 
columnar cells of the periphery, and in the central cells 
of the tumour island. LIN28A showed strong immu-
nostaining with nuclear and cytoplasmic localisation 
limited to the central cells of the tumour island. Intense 
immunostaining was observed for KLF4 nuclear locali-
sation in epithelial cells. The labelling was predomi-
nantly located in the nuclei of tall columnar cells at 
the periphery of the tumour island. Nuclear and cyto-
plasmic markings of SALL4, LIN28A, and KLF4 were 
also observed in some cases of DC and DF; however, 
the expression of SALL4, LIN28A, and KLF4 was sig-
nificantly higher in AME samples compared to DC 
(p < 0.001) and DF (p < 0.001), as demonstrated in the 
statistical analysis (see Fig. 2).

AME‑hTERT lineage expressed SALL4, LIN28A, and KLF4
The immunofluorescence assays revealed that the AME-
hTERT strain expressed SALL4, LIN28A, and KLF4 (see 
Fig. 3). Neoplastic cells demonstrated nuclear and cyto-
plasmic expression of SALL4 (see Fig.  3A), nuclear and 
cytoplasmic expression, with nuclear predominance of 
LIN28A (see Fig. 3E) and predominantly nuclear expres-
sion of KLF4 (Fig. 3I). The immunoexpression of all pro-
teins was granular (see Fig. 3).

Discussion
The studied proteins showed significantly higher levels 
of immunostaining in AME cells than in the DC and DF 
cells. SALL4, LIN28A, and KLF4 were expressed in the 
AME parenchyma, with slight staining observed in some 
cells of the odontogenic epithelium of DC and DF. Fur-
thermore, immunoexpression of the studied proteins was 
observed in the AME-hTERT strain.

SALL4 is a transcription factor that plays a key role 
in maintaining pluripotency and self-renewal of embry-
onic stem cells [14]. It interacts with other important 
regulatory proteins of embryonic pluripotency — OCT4 
(octamer-binding protein 4), SOX-2 (HMG-box gene 2 
related to SRY), and NANOG (homeodomain protein) — 
forming an autoregulatory circuit in which each of these 
proteins regulates its own expression and that of others 

Table 1 Demographical and clinical data, and histopathological 
typing of patients with AME (n = 21)

Case Gender Age Localization Histological type

1 Male 23 Mandible Plexiform

2 Female 31 Mandible Follicular

3 Male 31 Mandible Plexiform

4 Female 27 Mandible Plexiform

5 Male 34 Mandible Plexiform

6 Female 32 Mandible Follicular

7 Female 55 Mandible Plexiform

8 Female 20 Mandible Plexiform

9 Male 32 Mandible Plexiform

10 Male 33 Mandible Acanthomatous

11 Female 59 Mandible Follicular

12 Female 47 Mandible Acanthomatous

13 Female 14 Mandible Follicular

14 Male 42 Mandible Granular Cells

15 Male 43 Mandible Granular Cells

16 Male 28 Mandible Follicular

17 Male 27 Mandible Acanthomatous

18 Female 62 Mandible Follicular

19 Male 84 Upper jaw Follicular

20 Male - Mandible Follicular

21 Male 22 Mandible Plexiform
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[33–35]. High expression of SOX-2, NANOG, and OCT4 
has been demonstrated in AME [10], suggesting that 
these proteins may act together to maintain undifferenti-
ated stem cells in this tumour. 

In the present study, cells from the AME tumour 
islands and the AME-hTERT lineage showed nuclear 
and cytoplasmic expression of SALL4, corroborating the 
marking pattern found by other studies in oral squamous 
cell carcinoma that suggests that this protein plays an 
important role in the progression of oral cancer and may 
serve as a potential therapeutic target [36–38]. Nuclear 
labelling indicated the transcriptional activity of SALL4. 
Such activity is associated with transcriptional repression 
mechanisms that prevent stem cell differentiation and 
increase the proliferation of undifferentiated cells [35, 
39]. SALL4 cytoplasmic marking has also been demon-
strated in breast cancer cells and is considered a predic-
tor of poor prognosis [40].

Studies have shown that SALL4 protein expression 
is negatively regulated by miRNAs (miRNAs) belong-
ing to the Let-7 family, particularly by miR-98, which 
leads to a reduction in tumour cell proliferation, indicat-
ing that miR-98 acts as a tumour suppressor that inhib-
its SALL4 protein expression [41, 42]. It is important 

to emphasise that LIN28 protein can downregulate the 
Let-7 microRNA family through the activation of its 
isoforms LIN28A or LIN28B [25, 43]. This suggests that 
the upregulation of LIN28 leads to the inhibition of miR-
98, which, in turn, leads to the upregulation of SALL4. 
Therefore, the co-expression of SALL4 and LIN28A in 
AME observed in this study may play a significant role in 
tumour pathogenesis.

LIN28A is a highly conserved RNA-binding pro-
tein that plays a significant role in development, glu-
cose metabolism, and pluripotency [44–46]. It is highly 
expressed in mouse embryonic stem cells, which 
decreases after differentiation, and in human embryonic 
carcinoma cells [47]. Oral squamous cell carcinoma has 
been demonstrated to be associated with the regulation 
of the proliferative and invasive activities of this neo-
plasm [48]. Furthermore, LIN28A has been identified 
as one of the four factors that convert fibroblasts into 
induced pluripotent stem cells, corroborating the role of 
this protein in pluripotent stem cells [49].

In this study, LIN28A immunostaining showed nuclear 
and cytoplasmic localisation limited to the central cells 
of the AME tumour islands. The same expression pat-
tern was observed for the AME-hTERT strain. LIN28A 

Fig. 2 Immunohistochemical staining for SALL4, LIN28 and KLF4 in AME, DC and DF samples. Intense SALL4 immunostaining was observed 
in the parenchymal cells of the plexiform AME, with nuclear and cytoplasmic location (A). Strong LIN28A immunostaining was observed 
in follicular-type AME, with nuclear and cytoplasmic localization limited to the central cells of the tumor island (E). Intense KLF4 immunostaining 
in plexiform AME was observed with a nuclear location (I). There was a subtle labeling of the three proteins in the nucleus and cytoplasm of some 
epithelial cells in both DC (B, F and J) and DF (C, G and K) samples. Statistical analysis of the percentage of parenchymal marking area of the three 
markers (D, H and L) between AME, DC and DF. (***p < 0.001). Scale bar: 20 µm. AME = Ameloblastoma; DC = Dentigerous cyst; DF = Dental follicle



Page 6 of 10de Albuquerque Dias et al. Diagnostic Pathology           (2023) 18:92 

is predominantly cytoplasmic and located on ribosomes, 
P bodies, and cytoplasmic stress granules [50]. The 
cytoplasmic expression found in the present study may 
be associated with its performance in the recruitment 
of terminal uridylyl transferase (TUTase4) ZCCHC11, 
which inhibits Let-7 processing in the cytoplasm and 
selectively blocks the expression of Let-7 miRNAs and 
their functions tumour suppressors, acting as an onco-
gene and promoting tumorigenesis [25, 51]. This action 
has been demonstrated in embryonic stem cells, sug-
gesting a significant role of LIN28A in inhibiting cell dif-
ferentiation through miRNAs in stem cells and certain 
types of cancer [52].

Nuclear expression of LIN28A was observed when 
both RNA-binding domains were mutated [50]. A model 
has been proposed in which LIN28A regulates the post-
transcriptional processing of its mRNA targets by first 
binding to these targets in the nucleus and subsequently 
transporting them between ribosomes, P bodies, or stress 
granules for translation regulation, depending on the 

environmental conditions [50, 53]; however, more studies 
are needed to better understand this process.

The central region of the AME tumour islands, which 
exhibits greater LIN28A labelling, is more prone to 
hypoxia. As the tumour progresses, the concentration 
of oxygen in the microenvironment around the tumour 
cells decreases, leading to intratumoural hypoxia [54]. 
In response to this condition, hypoxia-induced factor-1 
alpha (HIF-1α) regulates the expression of genes that 
help cells adapt to this environment [55]. Studies have 
indicated that HIF-1α is overexpressed in AME, suggest-
ing that hypoxia is related to proliferation and invasion of 
the solid areas of this tumour [56–58]. It has been shown 
that HIF-1α binds directly to the LIN28A promoter and 
induces its transcription [59] and that hypoxia is capable 
of inducing the expression of stem cell markers in cancer 
cell lines, thereby contributing to the dedifferentiation 
and reprogramming process that induces the formation 
of cancer stem cells [59–61]. From this, we can infer that 
the expression of LIN28A in the central cells of the AME 

Fig. 3 Immunofluorescence photomicrographs of SALL4, LIN28 and KLF4 in AME-hTERT strains. SALL4 showed immunoexpression with a granular 
pattern located in the nucleus and cytoplasm (A). LIN28A showed immunoexpression with a granular pattern in the nucleus and cytoplasm, 
with nuclear predominance (E). Granular expression of KLF4 was observed in the nuclei, showing faint staining in the cytoplasm (I). Control 
group (CT) (M). The cytoskeleton was stained with phalloidin (red), and the nuclei were stained with Hoechst 33258 (blue). Overlapping images 
of the expression of SALL4 (D), LIN28 (H), KLF4 (L) and control group (P). Scale bar: 20 µm
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tumour island close to the high columnar cells in the 
periphery may be associated with the adaptive response 
of tumour cells to hypoxia, inducing the dedifferentiation 
of peripheral cells, and thus promoting greater prolifera-
tion and invasion.

KLF4 is an essential transcription factor in the regula-
tion of cellular processes (e.g. development, differentia-
tion, proliferation, and apoptosis) [16] and in the renewal 
of stem cells and maintenance of pluripotency [29, 30]. It 
has been used as a reprogramming factor for fibroblasts 
and odontoblasts in induced pluripotent stem cells along 
with LIN28A [62, 63]. In different cell types, KLF4 func-
tions as both a tumour suppressor and an oncogene [16]. 
Increased expression has been reported in human head 
and neck squamous cell carcinoma and is associated with 
poor prognosis and aggressiveness, corroborating its 
oncogenic role [64, 65]. In contrast, Land et al. [66] found 
an association between high KLF4 expression and a 
favourable prognosis. Another study reported the role of 
KLF4 in oral squamous cell carcinoma, in which mecha-
nisms of action were described as both tumour suppres-
sors and oncogenes [67]. Some scholars believe that the 
function of KLF4 as an oncogene or tumour suppressor 
is modulated by its complex interactions with several 
tumour microenvironments [68].

In the present study, intense nuclear immunostaining 
for KLF4 was observed in AME, predominantly in the tall 
columnar cells located on the periphery of the tumour 
island. In the AME-hTERT strain, nuclear expression of 
KLF4 with mild cytoplasmic expression was observed. 
KLF4 is mainly located in the nucleus, but its cytoplasmic 
localisation has also been reported in prostate and oral can-
cers [65, 68, 69]. Increased KLF4 nuclear expression has 
been associated with poor prognosis in patients with breast 
and head and neck cancer [64, 70]. However, another study 
suggested that the downregulation of KLF4 is associated 
with the progression of oral carcinoma [71]. Considering 
the ambiguity of this transcription factor, further studies 
are required to assess the role of KLF4 in AME.

The findings of the present study indicate that SALL4 and 
LIN28A may play a significant role in the biological behav-
iour of AME, suggesting a possible role for stem cells in the 
genesis and progression of AME. The KLF4 transcription 
factor plays a context-dependent role in carcinogenesis 
and may be up or downregulated in distinct types of can-
cer. Therefore, its role in AME needs to be better under-
stood. However, considering its expression together with 
that of other studied proteins, we suggest its participation 
and interaction as an oncogene. Although these results are 
promising, mechanistic and in  vivo studies are required 
to confirm these hypotheses and elucidate the underly-
ing molecular mechanisms. Understanding these mecha-
nisms may have significant implications for the diagnosis, 

prognosis, and treatment of AME, thus opening up new 
possibilities for personalised and effective therapies.

Conclusions
To the best of our knowledge, this is the first study to 
evaluate the expression of SALL4, LIN28A, and KLF4 
proteins in a benign odontogenic tumour. The study 
results verify the expression of these stem cell markers 
in AME neoplastic cells by IHC and in the AME-hTERT 
cell line by immunofluorescence, suggesting the possible 
participation of stem cells in the origin, progression, and 
recurrence of this tumour.
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