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Abstract
Historically, histopathology evaluation is performed by a pathologist generating a qualitative
assessment on thin tissue sections on glass slides. In the past decade, there has been a growing
interest for tools able to reduce human subjectivity and improve workload. Whole slide scanning
technology combined with object orientated image analysis can offer the capacity of generating fast
and reliable results. In the present study, we combined the use of these emerging technologies to
characterise a mouse model for chronic asthma. We monitored the inflammatory changes over five
weeks by measuring the number of neutrophils and eosinophils present in the tissue, as well as, the
bronchiolar associated lymphoid tissue (BALT) area on whole lungs sections. We showed that
inflammation assessment could be automated efficiently and reliably. In comparison to human
evaluation performed on the same set of sections, computer generated data was more descriptive
and fully quantitative. Moreover optimisation of our detection parameters allowed us to be to
more sensitive and to generate data in a larger dynamic range to traditional experimental
evaluation, such as bronchiolar lavage (BAL) inflammatory cell counts obtained by flow cytometry.
We also took advantage of the fact that we could increase the number of samples to be analysed
within a day. Such optimisation allowed us to determine the best study design and experimental
conditions in order to increase statistical significance between groups. In conclusion, we showed
that combination of whole slide digital scanning and image analysis could be fully automated and
deliver more descriptive and biologically relevant data over traditional methods evaluating
histopathological pulmonary changes observed in this mouse model of chronic asthma.

Introduction
Obtaining quantitative data from histological sections
represents a formidable challenge. While an investigator
might have the patience to count objects in a few given

fields, the task is tedious and may even result in inconsist-
ent classification across investigators. Not surprisingly,
much effort has been devoted to automating the classifi-
cation and quantification of histological structures in var-
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ious disease models [1-7]. We will show here that
Definiens eCognition tools are able to generate accurate
and powerful algorithms allowing us to process morpho-
metric data faster and more reliably than traditional slide
scoring in a mouse model of chronic asthma.

Materials and methods
Animal treatment
Female BALB/c mice (6–8 weeks, 16–22 g, Charles River,
UK) were housed under specific pathogen-free condi-
tions. Mice were exposed to purified HDM extract (Der-
matophagoides pteronyssinus; Greer Laboratories,
Lenoir, NC) intranasally (1, 5, 10 and 25 μg in 10 μl of
saline) while under transient isoflurane anaesthesia. Con-
trol animals received 10 μl saline intranasally. Exposures
were carried out for 5 days/week for up to 5 weeks.

Section preparation
After BAL had been performed, the lungs were removed
from the thoracic cavity and expanded with 10% formalin
(Sigma, UK) through the tracheal cannula. The lung was
immersed in 10% formalin and fixed for 24 hours at room
temperature, prior to being placed dorsal surface down
into a cassette and processed into paraffin wax (Tissue-Tek
VIP, ThermoFisher Scientific). Sectioning was carried out
at 4.5 μm. Three sections (or more) which were at least 10
μm apart, were evaluated from each animal using the fol-
lowing protocols: 1. Tissue eosinophil IHC using a pri-
mary antibody to the Major Basic Protein (1/100 dilution,
goat anti-EMBP(S-16), Santa Cruz Biotechnology, Heidel-
berg, Germany) and biotinylated donkey anti-goat IgG (1/
500 dilution, Jackson ImmunoResearch, Stratech, UK).
The complex was visualised with hydrogen peroxide sub-
strate and DAB chromogen (Ventana, US). 2. Tissue neu-
trophils IHC using a primary antibody to the
Myeloperoxidase (1/50 dilution, Rabbit anti Myeloperox-
idase from Abcam ab9535) and biotinylated donkey anti-
goat IgG (1/200 dilution, Jackson ImmunoResearch,
Stratech, UK). The complex was visualised with hydrogen
peroxide substrate and DAB chromogen (Ventana, US). 3.
Periodic Acid Schiff (PAS) staining for carbohydrate mac-
romolecules in bronchiolar mucus using a Leica ST5020
autostainer (Leica Microsystems, UK). The slides were
cleaned and digitalised with the Nanozoomer Digital
Pathology System (NDP, Hamamatsu, Welwyn Garden
City, UK) within 2 days of staining at 20 × magnification.

Ruleset design
The algorithms used for image analysis were developed
under Definiens 6.0. First, tissue sections were recognised
at 1× virtual magnification (according to objects bright-
ness), allowing us to analyse separately sections located
on a single glass slide. A specific ruleset was developed for
each biomarker, allowing us to detect and measure several
parameters for each staining. Numerous internal measure-

ments were performed along the different categories of tis-
sue search to obtain auto-adjusting thresholds. Almost no
size or shape criteria were used, favouring context infor-
mation.

Ruleset validation and statistical analysis
The ruleset was validated by comparing results generated
by Definiens 6.0 on a small subset of images (15) with
manual or semi-automated evaluation (Image Pro Plus).
Data were graphed and analyzed by Microsoft Excel and
are expressed as mean ± SEM. Inflammatory index was cal-
culated as the cubic root of the relative number of neu-
trophils (to week one saline group) multiplied by the
relative number of eosinophils (to week one saline group)
multiplied by the relative area of bronchiolar associated
lymphoid tissue (to week one saline group).

Results
Inflammatory state evaluation is more descriptive and 
accurate than pathologist assessment
We first assessed manually the pulmonary inflammatory
changes in mice receiving house dust mite extracts using
standard histopathological criteria. This scoring was done
on scale from 0 to 4 evaluating the different components
associated with inflammation, where 0 is not inflamed tis-
sue and 4 very inflamed tissue (figure 1A). We then tried
to reproduce the cognitive assessment performed by the
pathologist to attribute this score, by measuring the
number of eosinophils, the number of neutrophils and
the total area covered by bronchiolar associated lymphoid
tissue. Those three parameters where combined as
described in Material and methods to generate an inflam-
matory index (figure 1B).

Direct comparison between manual assessment and fully
automated assessment of the inflammatory changes in
lung sections shows a linear correlation with r2 = 0.6414.
We can notice that at low HDM dosage, the pathologist
often gives an inflammatory score of zero, which is not the
case for the computer. In fact, directly comparing 10 μg
and 25 μg dosage only, shows a better correlation with r2
= 0.8855. The best correlation is given for HDM dosage of
25 μg with r2 = 0.9654. This tends to indicate that the
computer is able to detect more subtle changes within the
tissue compared to human scoring and therefore reinforce
the objectivity and quantitative aspect of this computer-
assisted image analysis approach.

Interestingly, the automated scoring was given by the
combination of 3 independent measurements, which
taken individually can be more descriptive physiologi-
cally than a simple inflammatory scoring. We can deter-
mine the kinetics of neutrophils and eosinophils
infiltration within the lungs, helping us to better under-
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stand the inflammatory mechanisms associated with this
current model.

Proper normalisation factor multiply study power and 
sensitivity
Whilst we have shown that our automated system can be
biologically more relevant than simple pathologist scor-
ing, we also tested the sensitivity and dynamic range of
our system. As one could expect, surface measurement
such as bronchiolar associated lymphoid tissue or mucin
only make sense if they are normalised to the area of tissue
effectively analysed. We have shown in Figure 2 that
changing the normalising factor of mucin area measure-
ment for example drastically improves our results.

When we measure the area of mucin relative to the tissue
area (excluding the airspace) we can monitor a relative
average 20 fold increase between control group and high-
est dosage of HDM (Figure 2D). As a large part of the tis-
sue cannot constitutively contain any mucin we excluded
alveolar tissue area from our normalisation factor. This
does increase the dynamic range of our measurements,
giving us an average 60 fold increase between our control
group and the highest dosage of HDM (Figure 2E). Unfor-
tunately, as we have previously shown, the HDM treat-
ment also induces an increase in bronchiolar associated
lymphoid tissue area. This introduces a bias in mucin cov-
erage estimation, and was removed from our normalisa-
tion calculation. We finally obtain an average 80 folds
increase between our control group and the highest dos-
age of HDM (Figure 2F).

At necropsy, a bronchiolar lavage (BAL) was performed
on the lung prior to perfusion with fixative. This lavage
solution was analysed by flow cytometry in order to deter-
mine the proportion of eosinophils and neutrophils in
the lung fluids (data not shown). Interestingly, we obtain
an excellent correlation between BAL results and image
analysis (r2 = 0.8213 for neutrophils, r2 = 0.9198 for eosi-
nophils) indicating a high level of accuracy. Nevertheless
our correlation where not entirely linear, indicating a
higher sensitivity in low concentration of neutrophils
(about 2 folds) and a larger dynamic range in large con-
centrations of eosinophils.

Number of sections has little influence on statistical power 
of the study
We have shown that this technique is reliable, descriptive
and more sensitive than manual or flow cytometry assess-
ment. One other advantage of automated analysis is that
is can be run fairly quickly once it has been optimised. We
have been able to analyse one image every 2 minutes in
the case of eosinophils and neutrophils count and one
image every 5 minutes in the case of mucin detection.
Because of this fact, we assessed if increasing the number
of serial sections per animal would further increase the
statistical significance of study data, allowing us to opti-
mize the number of animals per group. As shown on table
1, we have seen little improvement of statistically relevant
detection level when increasing the number of sections
compared to the influence of the number of animal per
group.

Comparison between manual and computerised assessment of pulmonary inflammation in mouse receiving House Dust Mite (HDM) extracts over 5 weeksFigure 1
Comparison between manual and computerised assessment of pulmonary inflammation in mouse receiving House Dust Mite 
(HDM) extracts over 5 weeks. A. Manual assessment of pulmonary inflammation in mouse performed by a pathologist. B. 
Automated assessment of pulmonary inflammation done by combining 3 signs of inflammation: total number of neutrophils 
detected, total number of eosinophils detected and total area covered by inflammatory cells.
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This statistical analysis confirms that we are monitoring
accurately the pulmonary inflammatory changes with 2 or
3 sections analysed per animal when having at least 5 ani-
mals per group. Similar statistical analysis on other tissues
and biomarkers will be influenced by the complexity of
the organ evaluated and the frequency and distribution of
the biomarker measured. Indeed, one should expect dif-
ferent results in the case of more heterogeneous tissue
such as brain, or cancerous lesions, for example. Never-
theless, we have demonstrated a powerful tool allowing
us to make such a quality assessment.

Discussion
As we have seen, the use of automated image analysis can
give accurate readings of pulmonary inflammatory
changes in mice. By using whole slide scanning instead of
stereology we reduce the chance of missing a potentially
interesting outlier without increasing processing time and
workload in slide production. We therefore generate
quantitative and objective results. We can rapidly and
automatically assess pulmonary inflammation, thereby
reducing human workload and bias. Moreover by com-
bining different types of analysis, we can analyse complex
structures and generate biologically descriptive data.

Taken together the data we presented are showing that
these tools can help generate reliable, comprehensive and
biologically descriptive data in a sensitive and time effec-
tive fashion.

Influence of the normalisation factor on mucin secretion detection levelsFigure 2
Influence of the normalisation factor on mucin secretion detection levels. A, B and C Panels show classification views of a 
mouse tissue section after analysis. The red surface represents the area covered by mucin (our nominator), and the light green 
surface represents the tissue area used for normalisation purposes (our denominator). We used at first the whole tissue sec-
tion (excluding the air space) as shown in panel A, which generated the results shown in the graph D. We then excluded alve-
olar tissue as shown in panel B, and generated the results shown in the graph E. At last we excluded inflammatory infiltrate as 
shown in panel C, and generated the results shown in the graph F.
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Table 1: Relative influence of the number of sections per animal 
and the number of animals per group on mucin detection levels. 
The numbers shown here represent the fold of changes over 
control group required to reach statistical significance.

Mucin Number of animals

3 4 5 6 7 8 9 10

2 sections 4.78 3.39 2.83 2.52 2.32 2.17 2.07 1.98
3 sections 4.22 3.08 2.61 2.34 2.17 2.04 1.95 1.88
4 sections 3.95 2.92 2.50 2.25 2.09 1.98 1.89 1.82
5 sections 3.79 2.83 2.43 2.20 2.05 1.94 1.85 1.79

Eosinophils Number of animals

3 4 5 6 7 8 9 10

2 sections 8.79 5.46 4.25 3.61 3.22 2.94 2.74 2.58
3 sections 7.65 4.90 3.88 3.33 2.98 2.75 2.57 2.43
4 sections 7.11 4.63 3.69 3.19 2.87 2.65 2.48 2.35
5 sections 6.80 4.47 3.58 3.10 2.80 2.59 2.43 2.31

Neutrophils Number of animals

3 4 5 6 7 8 9 10

2 sections 3.89 2.89 2.47 2.23 2.07 1.96 1.88 1.81
3 sections 3.69 2.77 2.38 2.16 2.02 1.91 1.83 1.77
4 sections 3.59 2.71 2.34 2.13 1.99 1.89 1.81 1.75
5 sections 3.53 2.68 2.31 2.11 1.97 1.87 1.79 1.73
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