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Abstract

Virtual microscopy can improve the workflow of modern pathology laboratories, a goal limited by the large size of
the virtual slides (VS). Lately, determination of the Regions of Interest has shown to be useful in navigation and
compression tasks. This work presents a novel method for establishing Rols in VS, based on a relevance score
calculated from example images selected by pathologist. The process starts by splitting the Virtual Slide (VS) into a
grid of blocks, each represented by a set of low level features which aim to capture the very basic visual
properties, namely, color, intensity, orientation and texture. The expert selects then two blocks i.e. A typical relevant
(irrelevant) instance. Different similarity (disimilarity) maps are then constructed, using these positive (negative)
examples. The obtained maps are then integrated by a normalization process that promotes maps with a similarity
global maxima that largely exceeds the average local maxima. Each image region is thus entailed with an
associated score, established by the number of closest positive (negative) blocks, whereby any block has also an
associated score. Evaluation was carried out using 8 VS from different tissues, upon which a group of three
pathologists had navigated. Precision-recall measurements were calculated at each step of any actual navigation,
obtaining an average precision of 55% and a recall of about 38% when using the available set of navigations.

Background

Digital technology trends have changed our modern
vision about storing, transmitting or visualizing histopa-
tological specimens, under client-server architectures
and regular communication networks. Emulation of an
actual optical microscope, in virtual environments, is a
field currently known as virtual microscopy, a new
domain that has generated great expectancies about the
role these technologies may play on medical diagnosis,
teaching, training, research [1] and evaluation of the
pathology laboratory workflow chain [2]. Nevertheless,
the actual use of these technologies in clinical scenarios
as routine tools still remains limited, among others
because of the slowness of the histological digitization,
the lack of standard acquisition processes, the long
latency times when accessing remote computational
systems and the large requirements, concerning
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computational resources [3]. Development of optimal
strategies to cope with these restrictions is then a prior-
ity for the field to reach a certain level of maturity. The
main impact in terms of a seamless navigation is intro-
duced by the large size of these images. In other words,
these systems require huge storing spaces and dedicated
communication lines, both increasing the cost of this
technology. Smart compression turns out to be a
pre-condition for these images to be useful but also
acceleration interaction methods need to be devised.
Interaction with these data could be speeded up by
designing problem-related strategies such as prefetching
the required data to the client side before he/she ask it.
Likewise, navigation may be highly improved by storing
part of this information in adapted cache spaces .
Furthermore, most network and computational bottle-
necks could be highly improved if Regions of Interest
(Rols) may be set beforehand. However, manual selec-
tion of Rols in images of such size is an impossible task
in clinical routine so that automation of this process
results an important pre-condition for these systems to
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be useful, basically because this Rol setting results in
probabilistic maps that may be used as initial condition
of any pre-fetch or caché strategy.

A classical approach for finding Rols in natural images
has consisted in identifying regions of the image with
high spatial edge density [4]. This concept could not-
withstanding hardly be applied to histopathological
images because they contain regions with high edge
concentration without clinical meaning [5]. In medical
images, the selection of Rols has been approached using
several methods. For instance, Karras et al. [6], in gray
scale images from abdominal cancer, hypothesizes that
regions with high density of repetitive patterns were of
diagnostic interest. These features were the input to a
fuzzy c-means clustering algorithm that classified
regions as important or non-important. This technique
is not, very likely, applicable to histopathology images
because information coming from color, intensity or
spatial correlation [7,8] results crucial for identifying
diagnostic areas.

In the histopathological domain, specifically automatic
cancer diagnosis, [9], the disease was characterized at
two levels: cellular, focusing on cell abnormalities,
[10,11] and tissular, describing changes in cell distribu-
tions [12]. In both cases, this description was performed
by low level image characterization and statistical analy-
sis to discriminate normal from cancerous tissues. Oger
et al [13] have proposed an automated method for find-
ing Rols in breast tumor section. The performs an spec-
tral analysis using a rectangular grid which represents
the image as a graph, where every node corresponds to
a block and every edge is weighted by a ‘similarity’
between the nodes(blocks) that are connected. A ran-
dom walk on the data is set by the probability to pass
from one node to another. The second and third eigen-
vectors of the transition node matrix, allow to automati-
cally sort out the blocks by classes. Segmentation of
colon glands has been achieved using graphs [14]: a set
of primitives are used to segment glands, making use of
the object distribution, quantified as the definition of
object-graphs.

A pathological diagnosis is the result of a complex ser-
ies of activities mastered by the pathologist. Classical
psycho physical theories suggest that complex visual
tasks, such as histological examination, involve high
degrees of visual attention [15]. There exists evidence
showing that visual systems integrate the constituting
low level features of an object [16]. These findings have
inspired several computational algorithms that somehow
search to capture the main meanign of the low level fea-
tures [17]. One of the most influential is the one pro-
posed by Itti et al. [18], a pure bottom-up attention
model that locates relevant foci, based on a conjoint
map of three low level characteristics, i.e., color,
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intensity and orientation. However, histopathology iden-
tification of diagnostic areas (regions of interest) require
the association of complex visual patterns in tissues
with pathologies or organs [19], through an active
search of specific features. This requirement limits the
performance of Itti Model for the detection of relevat
regions on histopathologic images. An automated
method [20] for finding diagnostic regions-of-interest
(Rols) in histopathological images used a modified ver-
sion of the Itti’s model (Adding entropy as a key feature)
to partially establish which areas could be relevant.

In this work we present a novel semi-automatic
method that is able to find Rols from histopathological
images. The strategy starts by splitting the VS into an
arbitrary partition of subblocks, upon which a distance to
a typical relevant subblock, selected by an expert patholo-
gist, is assigned. The metrics is defined as a non linear
combination of the projection of each of these subblocks
into several subspaces, each defined by different low level
features. Finally, a ranking score allows to define several
levels of relevancy or level sets of relevance, not necessa-
rily connex. This article is organized as follows: next sec-
tion will describe the computational method used for the
extraction of regions of interest on histopathological
images is also described. Section results presents the
experimental evaluation, while the method performance
to find Rols is demonstrated by using the precision and
recall measures. In the discusion section, we present an
analysis of the results and the potential impact of them
onto the virtual microscopy field.

Materials and methods

Virtual slides acquisition

A total of seven histologic slides were digitized and eight
high resolution images (WVS) were assembled using an
acquisition system which consisted of a Sony high reso-
lution digital video camera Handycam DCR-HC85 (640
x 480 pixels) coupled to a Carl Zeiss Axiostar Plus
microscope, provided with Carl Zeiss 426126 and
456006 adapters (Carl Zeiss, Light Microscopy, Gottin-
gen, Germany). Biological samples were a normal inmu-
nostained pancreas with a captured grid of 64 x 64
microscopical fields (752 x 560 pixels) representing an
effective area of 13.114 x 9.641 mm, a neuroendocrine
thyroid tumor stained with Hematoxylin-Eosin (160x159
microscopical fields), an atypical thyrod adenoma
marked with thyroid peroxidase (91x123 microscopical
fields) and four additional specimen stained with Hema-
toxylin-Eosin, with diagnosis of apendicitis, reactive folli-
cular hyperplasia of a lymph node, leiomioma and
normal thyroid, respectively. Virtual slides were stitched
using automatic registration with cross correlation as
the similarity measure [21] and were stored in
JPEG2000 format for latter access and navigation.
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Navigation patterns

Three expert pathologists, each certified with at least
five years of experience, were previously trained in the
use of a virtual microscope prototype. The Graphics
User Interfase (GUI) of the virtual microscope is com-
posed of three windows: the main, the intermediate
and the largest magnifications. The former displays the
smallest version of the WVS, the thumbnail image,
upon which a rectangular re-sizable Window of Inter-
est (Wol) allows a desired selection to be displayed as
the intermediate magnification. Likewise, a second re-
sizable Wol is drawn onto the intermediate Wol and
projected as a new window with the largest magnifica-
tion. Displacements of a particular Wol are only
allowed for the thumbnail (the intermediate Wol
moves here) and intermediate (the largest Wol moves
here) magnification windows through drag and drop
operations. The GUI used in this work is depicted in
figure 1.

The virtual slides were randomly displayed to each
pathologist. Pathologists were asked to examine the vir-
tual slide until a diagnosis was reached, either the organ
recognition, the pathology, or both, using a regular com-
puter screen. During navigation, each Wol request,
regarding position, size, resolution and time, was
recorded for later analysis. The images used for the
method training, correspond to medium magnification
versions of the actual virtual slides.

Proposed method

The approach herein developed aims to detect Rols by
calculating a local relevance from positive (target) and
negative (distractor) examples. The method is illustrated
in figure 2

The whole strategy starts by splitting the VS into an
homogeneous grid of blocks. In the present work the
block size was typically of 70 x 70 pixels, which corre-
sponds to an area of X um2. At this stage, every block
is projected to the space of visual characteristics i.e. a
block is represented as features in four different spaces,
namely color, intensity, orientation and texture. Once
the partition is defined, the pathologist selects a typical
target (distractor) example that will be used in the
learning phase, which is herein understood as the
boundary definition of the classification problem, using
the typical examples. For doing so, a similarity metrics
allows to find the cluster of the target (distractor) exam-
ples in the feature spaces. The boundary between these
positive and negative clusters is learned from actual
navigations.

A similarity map is generated in each of the subspaces
for the target (distractor) class and non linearly inte-
grated into a single probability map. The whole process
is further detailed hereafter:

Page 3 of 8

Feature extraction

The feature choice has been motivated by aiming at
having a very general representation of the selected
spaces, that is to say, no particular effort was devoted to
using characteristics that could describe the set of VS
used in the present investigation. The following low-
level features has been selected to represent these histo-
pathological images.

» Gray scale and color histogram: This histogram
stores information about intensity and color image dis-
tribution. For gray-scale images, a 256 bins histogram
was used while in For color images, the RGB space was
partitioned in 8 x 8 x 8 = 512 bins.

+ Local Binary Partition histogram: This texture
related feature is obtained as follows, the intensity value
of a pixel P is compared with its 8 neighborhood. If the
neighbor intensity is larger (smaller), its position is filled
with 1 (0). This binary string with eight bins can take
values up to 256 and the histogram with 256 values was
calculated.

+ Tamura texture histogram: among the 6 different
Tamura features: coarseness, contrast, directionality,
line-likeness, regularity, and roughness, the first three
were used since they are strongly correlated with human
perception. The space generated by these three features
is partitioned in 8 x 8 x 8 = 512 bins and the associated
histogram is calculated.

« Sobel histogram: the Sobel operator is one of the
most known image processing operators for edge detec-
tion. A 3 x 3 operator was herein used and the asso-
ciated histogram with 512 bins is calculated.

Metrics

Provided that every low-level feature was herein repre-
sented with histograms, the respective metrics should
take this into consideration for evaluating differences.
The used metrics were:

+ Euclidian Distance

+ Histogram Intersection

+ Jensen Shannon Divergence

+ Relative Bin Deviation

+ Relative Histogram Deviation
Map integration
The image provides then the geometrical reference
frame, upon which different features define several
maps, obtained from the different representation and
metrics. A particular feature map highlights the rele-
vance of a unique characteristic. Five different features,
corresponding to visual perceptions, and five metrics
have been herein used to characterize the VS contents.
Taking into account that the generated maps are
extracted from different features, and that their distance
is evaluated using different metrics, each of the maps
will have different ranges. Once the set of maps is gen-
erated, information was integrated using a non-linear
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Figure 1 Graphical User Interface of the virtual microscope prototype. This illustration shows a small and medium microscope magnification for
lower resolutions while a high enlargement is displayed in the large window. Panning is allowed only in the smaller windows.
.

operator, as described by Itti [22]. This operator globally
promotes those features maps in which a small number
of strong activity peaks, as follows

« Provided that the example block is part of the VS, it
is important to devise a mechanism which avoids an
excessive promotion of this particular block. This is
achieved by reassigning the least distance map value

(distance is 0), which always corresponds to the target
block, to the second minimum value.

+ Map normalization within the interval [0 N], where
0 stands for the maximum distance and N is the mini-
mum so that a similarity function is defined from the
distance maps. Our interest is to assign a larger score to
the relevance zones.
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« The local maximum in a 3x3 neighbourhood and the
global maximum are calculated for each similarity map
and then the local maximum average is computed.

« Each element of these maps is weighted by (M-m)>
so that maps with a global maximum are better scaled
than other for which this distance is smaller.

« Finally the set of maps is integrated by adding them
out.

After the process of integration is achieved, we have
one map representing the target query, and the other
the distractor. The final similarity is obtained from the
difference between these two maps, as

N
RT=Z(am~Tm—bm~Dm)
m=1

where N denotes the total number of maps, a,, and
by, are weight factors in the normalization process and
T, (target) and D, (distractor) stand for the normalized
similarity and dissimilarity maps, respectively.

This map allows the selection of Rols when setting a
particular threshold for this ranking map, for example
with the 10% of the largest ranked blocks.

Experimental evaluation

The evaluation was addressed to measure the correlation
between blocks with high relevance score and the blocks
belonging to an observation path. The observation path

blocks are marked as I, when the number of visits is lar-
ger than 50 % of the visits received by the more visited
block, while the estimated ones are marked as E. The
conducted experiment consisted then in assigning a bin-
ary level of relevance to the observation path blocks and
measuring its coincidence level with the largest estimated
relevance blocks i.e. blocks whose estimated level of rele-
vance was larger than a 90 %.

The method was in addition compared with other two
methods, the Itti’s model and a random block selection.
The Itti’s model required an additional step since the
saliency map was averaged within the block.

Itti’s model implementation is described in [23].

Precision, the percentage of estimated blocks (E) iden-
tified as relevant (I), and recall, the percentage of blocks
(I) correctly estimated (E), were herein used to measure
the performance as follows:

.. INE
Precision = T

Recall = g

Results
During the experiment we used the eight virtual slides
described above. At the upper and bottom left panels of
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Figure 3 it is observed a low resolution version of a the
VS, of a inmunostained pancreas and a prostate stained
with haematoxylin-Eosin. Upon these images the obser-
vation paths have been superimposed, in lighter color
when more than one pathologist has run over it. The
observed result shows the image areas more visited in
both cases. The right panels, upper and bottom, show a
scale with the results of the proposed method. The scale
show in red the more relevant areas and in blue the less
ones. Coarsely, these results shows that relevance coin-
cides with what the zones visited by the pathologists in
both cases, even when one considers that the two types
of navigation were completely different.

Inmunostained pancreas had nearly very few things to
explore and pathologists dedicated their time to wander
around the image center, basically because Langerhans
Islets were located there. However, our method nicely
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followed this pattern. The prostate sample shows a
more distributted pattern which is also followed by our
method.

In Table 1. Precision and recall results for each of the
methods: the proposed model, Itti’'s model and random
selection. Both measures were higher in the proposed
method. In the case of the Itti’s model, the performance
varies according to the particular VS but in any case,
larger than the random model.

Opverall, precision and recall are consistently higher for
the proposed strategy with an average precision of 0,55
and an average recall of 0,38, figures considered as ade-
quate for the retrieval community. In image 3 precision
was 1, indicating that every block estimated by our
method is relevant, however not every block, marked as
interesting, was correctly estimated, whereby the recall
was in this case of 0,26. This is mainly due to the fact

Figure 3 Left: Histopathological image. Visited regions by pathologist are represented by higher intensity areas. Right: Relevancy map obtained
with the method.
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Table 1 Precision and Recall results
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interest which are part of the Rol neighbourhood.

Finally, yet the result of the Itti’s model was always

poorer than the presented method, it is always better

Proposed Itti Model Random
Image Precision Recall Precision Recall Precision Recall
1 0,12 023 0,01 0,03 0,05 0,09
2 043 0,16 03 0,11 0,25 0,09
3 1 0,26 0,09 0,02 0,35 0,09
4 0,57 0,67 0,14 017 0,08 0,08
5 0,57 02 0,1 0,03 0,28 0,1
6 0,48 0,73 017 0,27 0,06 0,09
7 05 042 0,31 0,26 0,11 0,09
8 0,69 032 0,05 0,08 0,21 0,1
Average 0,55 0,38 0,14 012 017 0,09

that the quantity of blocks defined as relevant exceeds
the quantity of estimated blocks whose relevancy is lar-
ger than a 90 %. An important factor which should be
considered in this case is that the Rols requestes by the
pathologists contained the Rol plus regions with no

than a simple random selection.

In figure 4, it is observed the performance for every
method for VS 5, 7 and the general average. It is worthy
to point out that the Itti’s performance is quite variable
regarding the whole set, basically because it is a very
local strategy which is unable to capture concepts, as
required in this case.

Discussion

The method presented in this article is based on the
selection of examples for extracting diagnostic regions
of interest in histopathologic images. Information is
integrated from different low-level features, extracted
from the VS. The results indicate that introduction of
expert knowledge, through a positive (negative) learning,
has a positive impact on the identification of these
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regions. Likewise, experiments demonstrated that visual
attention methods, based only on low-level information
of the image, are unadequate to solve this problem,
probably because the estimated regions with such mod-
els are not always related to the visual patterns asso-
ciated to pathologies. An important conclusion of this
work is that the presented method is quite general, it
was herein applied to very different types of histological
samples and results are very consistent.

The proposed model demonstrated a higher perfor-
mance regarding precision and recall measurements
when comparing with methods based on attentional
models, showing that prior knowledge introduction and
integration of multiple image features highly improves
the Rol identification. Yet there exist method for finding
Rols, it is worthy to strengthen out that most of these
methods are designed for a specific pathology. On the
contrary, our method is sufficiently general as to be
easily trained for any other pathology, using one block
as a target example and another as a distractor.

The variables of this model are basically associated to
the partition size of the VS, the selection of the example
block and the feature integration process. Regarding the
former factor, it is better to have a random criterion
since it is very arguable if a determined size completely
captures main features of a Rol. The selection of the
block examples are basically function of the pathologist’s
expertise, but in difficult cases our approach could be
modified to using a set of block rathern than a single
one. Finally, the integration process follows a simple
rule, which consists in promoting local signals, this
obviously can be improved and addressed to detect
more general features. Nevertheless, in the present
investigation the method was enough for having good
region estimations. Future work includes then further
investigation on integration strategies which better fol-
low regional criteria as well as selection of an optimal
number of blocks which reach a sparse representation
of the original signal, that is to say, blocks which cap-
ture the semantic of each region.
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