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Abstract

Background: Digital whole-slide scanning of tissue specimens produces large images demanding increasing
storing capacity. To reduce the need of extensive data storage systems image files can be compressed and scaled
down. The aim of this article is to study the effect of different levels of image compression and scaling on
automated image analysis of immunohistochemical (IHC) stainings and automated tumor segmentation.

Methods: Two tissue microarray (TMA) slides containing 800 samples of breast cancer tissue immunostained
against Ki-67 protein and two TMA slides containing 144 samples of colorectal cancer immunostained against EGFR
were digitized with a whole-slide scanner. The TMA images were JPEG2000 wavelet compressed with four
compression ratios: lossless, and 1:12, 1:25 and 1:50 lossy compression. Each of the compressed breast cancer
images was furthermore scaled down either to 1:1, 1:2, 14, 1:8, 1:16, 1:32, 1:64 or 1:128. Breast cancer images were
analyzed using an algorithm that quantitates the extent of staining in Ki-67 immunostained images, and EGFR
immunostained colorectal cancer images were analyzed with an automated tumor segmentation algorithm. The
automated tools were validated by comparing the results from losslessly compressed and non-scaled images with
results from conventional visual assessments. Percentage agreement and kappa statistics were calculated between
results from compressed and scaled images and results from lossless and non-scaled images.

Results: Both of the studied image analysis methods showed good agreement between visual and automated
results. In the automated IHC quantification, an agreement of over 98% and a kappa value of over 0.96 was
observed between losslessly compressed and non-scaled images and combined compression ratios up to 1:50 and
scaling down to 1:8. In automated tumor segmentation, an agreement of over 97% and a kappa value of over 0.93
was observed between losslessly compressed images and compression ratios up to 1:25.

Conclusions: The results of this study suggest that images stored for assessment of the extent of
immunohistochemical staining can be compressed and scaled significantly, and images of tumors to be
segmented can be compressed without compromising computer-assisted analysis results using studied methods.

Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/
vs/2442925476534995
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Background

Computer-assisted quantification of biomarkers in biologi-
cal tissue samples is becoming increasingly utilized [1-5],
due to objectivity, repeatability and savings in human
labor. Meanwhile, the use of whole slide scanning of
pathological tissue glass slides is producing large image
files up to hundreds of gigabytes in uncompressed format,
which have to be stored in digital slide archives. The size
of these archives including back-ups requires extensive
storage capacity. To reduce the need for extensive data
storage systems image files can be compressed and scaled
down.

Not only storage space is affected by image compression
and scaling, but also the bandwidth needed for transfer of
images is diminished. In contrast, compression and scaling
requires more processing power initially, as do the decom-
pression of images when viewed or analyzed. Scaling
speeds up automated quantification and classification
algorithms.

Generally, in order not to lose image data, the recom-
mendation for optimal image analysis has been to use
uncompressed images without image scaling [6]. However,
studies have shown that image compression has only
minor effect on visually performed diagnostics [7] and
computer assisted image analysis [8]. The role of compres-
sion in automated quantification of immunohistochemical
(IHC) stainings has been assessed in a few previous publi-
cations [9-11]. Image scaling and visual image quality has
been addressed in the literature [12], but to our knowl-
edge, none of the previous studies has taken the effect of
image scaling on automated image analysis into account.

In this paper, the effects of image compression and
scaling on automated quantification of IHC stainings,
and the effects of image compression on automated
tumor segmentation based on texture classification, were
studied. An overview of the image handling steps used in
this study is in Figure 1. We used publicly available
image compression algorithms and a previously described
open source image analysis algorithm for quantitative
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IHC that has been shown to produce results comparable
to visual scoring [3]. The other evaluated image analysis
method is intended for automated texture-based tumor
segmentation using a local binary pattern (LBP) algo-
rithm [13]. The LBP algorithm has been shown to be
immune to image compression up to JPG quality levels
of 75 in texture classification of natural image series [14].

Methods

Patients

Breast cancer series for automated IHC analysis

Two hundred patients were selected from a previously
reported breast cancer series [15]. The series included
tumors from 570 consecutive patients with invasive non-
metastatic breast cancer, treated at the Department of
Oncology at the Helsinki University Central Hospital
between 1997 and 1998. Tumor samples were analyzed
using the tissue microarray (TMA) technique. The
patients are part of a larger study focusing on hereditary
breast cancer, genetic, epidemiological and clinicopatholo-
gical factors associated with breast cancer risk and prog-
nosis. All patients underwent surgery and were treated
according to standard guidelines at that time regarding
adjuvant chemotherapy, radiotherapy and endocrine
treatment.

Colorectal cancer series for automated tumor segmentation
The study is based on 144 randomly selected tissue sam-
ples from a series of 643 consecutive patients who under-
went surgery for histologically verified colorectal cancer at
the Helsinki University Central Hospital in 1989 to 1998
[16].

Tissue microarray construction

Representative tumor regions in routinely fixed paraffin-
embedded samples were defined from H&E-stained sec-
tions and marked. Donor tissue blocks were sampled and
four cores from breast cancer specimens or three cores
from colorectal cancer specimens were punched from
each donor block and transferred to the TMA blocks.
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Figure 1 A flow chart of the image handling protocols used in this study.
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From the 200 breast cancer tumor samples available, two
TMA blocks were prepared, both containing 400 tumor
samples [15]. From the 643 colorectal cancer tumor sam-
ples available, 27 TMA blocks were prepared, each con-
taining 10-180 tumor samples, and eight TMA blocks
were selected for the previous study using texture analysis
in identification of tumor epithelium and stroma [16]. Out
of the eight TMA blocks, two were randomly selected for
the current study. Sections of 3-4 um were cut from the
TMA blocks and transferred to glass slides.

Immunohistochemistry

Breast cancer series for automated IHC analysis
Deparaffinization of the TMA samples was performed
using xylene. The slides were rehydrated through graded
alcohols to water. IHC for Ki-67 was performed by using
Mib-1 antibody (Dako, Stockholm, Sweden) diluted 1:100
in an automated immunostainer (Ventana Medical Sys-
tems Inc., Tucson, AZ, USA) using a DAB kit (Ventana).
The slides were manually counterstained in Mayer’s hae-
matoxylin (Sigma, St Louis, MO, USA). Finally, the slides
were dehydrated through alcohol series to xylene and
mounted in organic mounting medium (Pertex; Histolab,
Gothenburg, Sweden) [15].

Colorectal cancer series for automated tumor segmentation
The tissue samples used in the current study were pre-
viously immunostained as part of a separate study on the
expression of the epidermal growth factor receptor
(EGFR). Of note is that this particular immunostaining is
not relevant with regard to the objectives of the current
study. For IHC of EGER a Lab Vision Autostainer TM 480
(LabVision, Fremont, CA) was used. Deparaffinised forma-
lin-fixed, paraffin-embedded tissue sections were heated in
the pre-treatment module of the autostainer in TRIS-HCI
pH 8.5 buffer (for 20 min at 98°C). For inactivation of
endogenous peroxidases, the sections were incubated (for
5 min) in Peroxidase Block Solution (DAKO, Carpinteria
CA) and incubated for 30 min with the primary antibody
NCL-EGFR (Novocastra, Newcastle upon Tyne, UK),
diluted 1:10. The sections were then reacted (for 30 min)
using the Advance HRP detection system (DAKO, Carpin-
teria CA). The reaction products were revealed with DAB
and finally the sections were counterstained with haema-
toxylin (for 1 min) [16].

Visual scoring of ki-67 percentage in breast cancer TMAs
TMA slides were analyzed by one of the investigators. All
scoring was done under the supervision of an experienced
breast pathologist. The percentage of Ki-67 positive breast
cancer cells was evaluated in one high-power field (40x
objective and a field-of-view with a diameter of 450 pum) in
each of the four tissue cores on the TMA. Only unequivo-
cal nuclear staining was accepted as a positive reaction
for Ki-67. A minimum of 200 cells was counted in each
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tumor. All statistical analyses were done using both aver-
age and maximal values for each patient. When calculating
maximal values for Ki-67 in percentage terms, the biopsy
core that had the largest number of positively stained cells
out of the four was counted and divided by the entire
number of cells from that particular biopsy specimen. To
obtain the average value in percentage terms, all positive
cells from the four biopsy specimens were divided by the
entire number of cells from the same specimens [15].
Sample digitization

The breast and colorectal cancer TMA slides were digi-
tized with an automated whole-slide scanner (Mirax
Scan, Zeiss, Gottingen, Germany), using a 20x (numerical
aperture 0.75) objective and a DFW-X710 camera (Sony,
Tokyo, Japan). The pixel resolution was 0.26 um per
pixel. The images were initially stored in an uncom-
pressed Bitmap (BMP) format.

Image compression and scaling

The scanned images were compressed to a publicly avail-
able ISO Standard JPEG2000 wavelet format with the
JVScomp software developed at the University of Tampere
and freely available at http://jvsmicroscope.uta.fi/?
q=jvscomp. The JPEG2000 format is considered as the
most efficient way to store large images produced by
microscope scanners [17]. The settings for compression
were: lossless, and ratios 1:12, 1:25 and 1:50 for lossy com-
pression. Each of the compressed breast cancer tissue
images was furthermore scaled down either to 1:1, 1:2, 1:4,
1:8, 1:16, 1:32, 1:64 or 1:128. Due to the scale-variant nat-
ure of the LBP algorithm used in the automated tumor
segmentation method, scaling series was not applied to
the colorectal cancer series images.

The virtual microscopy platform

The compressed virtual slides were uploaded to our web
server (http://www.webmicroscope.net) running image
server software (Image Web Server, Erdas Inc, Atlanta,
Georgia). Virtual slides on the website can be viewed and
processed with image analysis algorithms (i.e. ImageJ and
MATLAB) using a standard web browser interface. The
user can navigate into the area of interest in a whole slide
sample or TMA, and store the current view as a region-of-
interest that subsequently can be processed by image ana-
lysis [16]. Each tissue core in Ki-67 TMAs was manually
annotated with the Webmicroscope graphical user inter-
face, and exported as losslessly compressed PNG image
for subsequent image analysis.

Annotation of representative tissue regions for automated
tumor segmentation

In the digitized tissue microarray slides, representative
areas of each tissue subtype, i.e. stroma (n = 138) and
epithelium (n = 269) were defined using the annota-
tion tool described above. The training of the algo-
rithm was carried out as previously [16]. Regions-of-
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interest are stored in a database and available at http://
fimm.webmicroscope.net/oncotexsupplements/epis-
troma. Image annotation was carried out by one of the
researchers (N.L.) and verified by a pathologist (S.N.).

The annotated areas were saved as losslessly compressed
PNG images. The dimensions of the annotated areas var-
ied between 168 to 1191 in pixel width and 168 to 1190
pixel height. Magnification was constant i.e. images were
always of the same pixel resolution although the image
size of the annotations was variable [16].

Computer vision algorithms

Automated scoring of IHC stainings The computer
vision algorithm used for automated scoring of immuno-
histochemical stainings in this study is entitled Ihc]J [3]. It
utilizes the macro language of an image processing and
analysis software, ImageJ, which is open source and avail-
able for multiple operating systems at http://rsb.info.nih.
gov/ij/. The Ihc] algorithm first divides the acquired
image of the IHC stained specimen in RGB colour space
into separate colour channels by a colour deconvolution
method. The Image] plugin for colour deconvolution has
a built in vector for separating haematoxylin (H) and
DAB stainings. After colour deconvolution, H and DAB
images are processed separately. By using five random
test samples stained for Ki-67, suitable global threshold
levels for H and DAB were determined manually. These
thresholds were used on both H and DAB images,
respectively, and kept constant for the analysis of the
main image dataset. Thresholding creates binary masks
of H and DAB positive areas and the two areas may over-
lap. Binary masks were merged into a single result image.
In the result image, the area of H-positive and DAB-
negative pixels is pseudocoloured with green. The area of
DAB-positive pixels regardless of H-status is pseudoco-
loured with red. The background, where both values are
negative, is indicated with white.

The extent of staining is calculated as the total number
of DAB-positive pixels divided by the union of the total
number of H-positive pixels and the total number of
DAB-positive pixels. The staining intensity is calculated
from the DAB positive area, as a mean pixel value of origi-
nal DAB image. The mean intensity value is scaled to
range from 0 to 100% to compensate for the effect of dif-
ferent DAB thresholds in subsequent routine use.

The automated segmentation of tumor epithelium
[16]

Texture features

The local binary pattern operator (LBP) compares each
pixel in an image to P pixels in a circular neighborhood
with radius R [13]. The intensity value of the central
pixel is used to threshold the surrounding pixels form-
ing a binary code. The original LBP was defined in a
rectangular 3 x 3 pixel neighborhood (P = 8, R = 1) for
gray-scale images, but the radius of the operator can be
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extended to include pixel neighborhoods farther from
the central pixel (e.g. P = 16, R = 2).

Invariance to rotation was achieved by using mini-
mized uniform patterns. When uniform patterns are
used, all the non-uniform patterns are mapped to one
LBP code. This restricts the amount of possible LBP
codes to P + 2.

To capture also the contrast information, i.e. the
strength of the texture patterns, the LBP was combined
with a rotation invariant local variance (VAR). As for the
LBP, the VAR is formulated in a circular neighborhood,
often with the same radius R and sample points P as the
LBP. Essentially the VAR represents the variance of the
gray values of the surrounding pixels i.e., the sample
points.

The joint distribution of the above-described operators
is used to merge the contrast with the LBP pattern. To
determine the joint distribution, the output VAR is quan-
tized to Q levels. The quantization is performed by com-
puting VAR for a set of training images and then dividing
the distribution of VAR values into Q sections, each hav-
ing an equal number of pixels. This restricts the size of
the joint distribution to (P + 2) x Q discrete bins.
MATLAB implementations for some of the methods pre-
sented here are available at http://www.ee.oulu.fi/mvg/
page/downloads[16].

Preprocessing of images for tumor segmentation

To extract the texture features, the tissue sample images
are first scaled, then converted to grayscale and finally
possible background area is removed.

In the current study, images were scaled by a constant
of 0.5. The grayscale conversion is performed by comput-
ing a weighted sum of the R, G and B components of the
color image: 0.2989 * R + 0.5870 * G + 0.1140 * B.

Possible background is removed by creating a binary
mask in which the foreground tissue pixels are marked
by ones and the background pixels by zeros. In bright
field microscope images, the background pixels have
high luminance values. These bright areas are removed
by thresholding the grayscale image. Structures in the
resulting binary mask are smoothed morphologically by
closing and eroding the binary image. The binary mask
is used later to prune areas scarce of tissue i.e., the
background [16].

Feature extraction for tumor segmentation

The downscaled images are divided into elements and
the classification is performed by processing the elements
independently. The elements are defined by sliding a
square of 80 x 80 pixel window through the image. The
window is moved row by row from the upper left corner
to the lower right by 40 pixels at a time, thus creating a
50% overlap. If the area of a background binary mask
that corresponds to the area of an element contains 50%
or more tissue, the particular element is processed, if not,
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the element is considered as background, and it is not
further processed.

For each element, a numerical representation of its
texture is computed using two discrete joint distribu-
tions: LBP"? + VARg and LBP%; + VAR;s,. The his-
tograms are concatenated to one (8 + 2) x 8 + (16 + 2)
x 8 = 224 bins long feature vector. The Euclidean norm
of the feature vector is normalized to one [16].

Linear classifier for tumor segmentation

A linear support vector machine (SVM) is used to clas-
sify the image elements extracted from the input images.
A library for large linear classification (LIBLINEAR) was
used to implement a linear capacity constant SVM (C-
SVM). The optimal value (300) for the parameter C was
established by validation [16].

The algorithm output

The analyzed images differed in size (pixel dimensions)
and therefore contained a varying number of elements
that were classified by the SVM. The average SVM score
of all elements in an image defined to which class the test
image was assigned (stroma or epithelium). The sign of
the classification score, or the decision value, indicates
on which side of the decision hyperplane a feature vector
lays, i.e. it represents the predicted class. The points near
the hyperplane in the feature space are more likely incor-
rect than the ones that are further from it; hence the
absolute decision value can be seen as a measure of the
certainty of the prediction. Images with an SVM score
lower than -1 or higher than 1 where therefore consid-
ered as strong candidates for the respective classes,
whereas those closer to zero (SVM score between -1 and
1) were considered as weak candidates. The threshold for
the classification into the stroma and epithelium cater-
gories was set to zero [16].

Statistical analysis

In order to validate the automated methods, the agree-
ments between the visual and automated methods were
estimated by percent agreement and kappa-statistics.
For comparison between visual and automated IHC
quantification, the continuous visual and automated Ki-
67 percentages were dichotomized with a seventh decile
cut-off, as previously suggested [15]. The results from
compressed and scaled images were compared to results
from lossless and non-scaled images with percent agree-
ment and kappa-statistics.

Results

When the breast cancer sample series was dichotomized
according to seventh decile cut-off value, the percentage
agreement between visual and automated methods for
quantification of the Ki-67 staining was 85% and the
Kappa value 0.64 (Table 1). For the colorectal cancer
series, the percentage agreement between the visual and
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Table 1 A contingency table for automated and visual
assessment of Ki-67 expression

Automated (lossless compression)

Visual Low High Total
Low 115 15 130
High 13 42 55
Total 128 57 185

automated segmentation method was 97% and kappa
value 0.93, suggesting very good agreement (Table 2).

The file sizes of the compressed and scaled images of
one of the whole TMA slides from the breast cancer
series are given in Table 3. Both the compression and
scaling reduces file sizes rapidly. Sample images of the
effect of image compression and scaling on image qual-
ity are presented in Figures 2 and 3, with corresponding
result images.

Considering the continuous results for automated IHC
quantification, the scatter plots of each studied compres-
sion and scaling levels compared to losslessly com-
pressed and non-scaled results are shown in Figure 4.
There is very little difference in results over varying
compression levels. When scaling is applied more than
1:8, the results start to deteriorate. Dichotomized results
for automated IHC quantification are shown in Tables 4
and 5. The percentage agreements exceed 98% with
combined compression ratios up to 1:50 and scaling
down to 1:8. Corresponding kappa values stay above
0.96. These results suggest a high level of agreement
between aforementioned compression and scaling levels.

The histogram of automated tumor segmentation
scores is shown in Figure 5. The stromal and epithelial

Table 2 A contingency table for automated and visual
segmentation of the tumor histology

Automated (lossless compression)

Visual Epithelium Stroma Total
Epithelium 264 5 269
Stroma 7 131 138
Total 271 136 407

Table 3 File sizes of the whole example breast cancer
tissue microarray slide image with different compression
(C) and scaling (S) ratios (uncompressed original file size
15540 MB)

[MB] S1 S2 S4 S8 S16 S32 S64 5128
Lossless 4141 1035 259 65 16 4 1 03

c12 356 89 22 6 1 0.3 0.1 < 0.1
c25 166 42 10 3 06 0.2 <01 <01
C50 81 20 5 1 03 0.1 <01 <01
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Figure 2 Sample images of the effect of scaling to visual image quality in a Ki-67 immunostained breast cancer tissue microarray
specimen, a) compression ratio 1:50, scaling ratio 1:1, b) compression ratio 1:50, scaling ratio 1:8, and c) compression ratio 1:50,
scaling ratio 1:16, with corresponding result images (d-f).

-

Figure 3 Sample images of the effect of compression to visual image quality in a colorectal cancer epithelial specimen, a) lossless, b)
compression ratio 1:25, and c) compression ratio 1:50, with corresponding result images (d-f).
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Figure 4 Scatter plots for different compression and scaling levels in automated Ki-67 immunohistochemistry quantification.
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images form two distinct peaks in the histogram. When
compression level increases, two separate peaks remain
but the epithelial peak moves towards the stromal side
leading to an increasing number of misclassified images.

The effect of this can be observed as a sharp decrease in
percentage agreement and kappa values between com-
pression ratios 1:25 and 1:50 (Table 6). By lowering the
decision threshold from zero, the discrimination
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Table 4 Agreement table for automated Ki-67 IHC 0 )
quantification (C = compression level, S = scaling level) "
[%] S1 S2 S4 S8 S16 S32 S64 S128 b
Lossless 99.63 9875 9887 9358 86.04 8651 7455 :
cn2 1000 9975 9875 9912 9358 8604 8651 7455 Lossless
25 9988 9963 9900 9900 9371 8604 8651 7455 0
C50 99.13 9937 9888 9925 9370 8617 8690 7455 :
‘ ||‘ |
5 76543

accuracy of the current algorithm can be retained, but W58 7%85432-10123 45678910
would require a re-calibration procedure to be inte-
grated with the algorithm.

Discussion and conclusions
The results from comparison of visual and automated C12
methods of Ki-67 IHC quantification in breast cancer
samples are in line with previously reported results with
the utilized algorithm applied to a different data set, which
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the results was equal to visual scoring [3]. The storage weeTesas reen
capacity needed for digital whole-slide scanning of tissue 100

specimens is becoming a major issue especially in pathol- .

ogy institutions with a highly digitized workflow. Image :;

compression or scaling can be used to reduce the need for 60

storage space substantially. The results of this study sug- C25 =

gest that images stored for the automated IHC analysis “

can be compressed and scaled significantly without com- : |

promising reliable computer-assisted analysis results. Also 10

the automated tumor segmentation based on local binary s - THNLLEARRENR..
pattern texture analysis performed well with images pre-

processed with a medium compression ratio. However, ':

these results are likely to be algorithm specific, and may w

not be applicable to algorithms based on other image fea- 70

tures or classification methods. The literature supports C50 :

this hypothesis, since for example object area measure- o

ment does not seem to be affected by image compression, 0

whereas object roundness does [10]. Lossy JPEG2000 com- )

pression introduces image degradation in form of slight ° 1. ‘
alterations in color content and blocking [6]. Thus, lossy M6 676643240123 45678050

compression should be performed only once per image in Figure 5 Histograms of automated tumor segmentation scores
the image processing workflow. If subsequent saving of (blue denotes stromal and red colorectal cancer epithelial

. y ded. a lossl . hould b d images as determined by visual assessment; negative x-axis
Images 1s needed, a 1ossless compression shou € used. values correspond to stroma and positive values to epithelium

Scaling may alter the shape of small objects in images, or by decision of automated method).
even lose the smallest objects, due to smaller image resolu-
tion. Algorithms that segment small histological entities

Table 5 Kappa table for automated Ki-67 IHC

quantification (C = compression ratio, S = scaling level) Table 6 Agreement and kappa table for automated
s1 52 s4 S8 S16 S32 S64 S128 tumor segmentation (C = compression level)

Lossless 09903 09674 09707 08217 05715 05898 00877 Agreement [%] Kappa

C12 1000 09936 09674 09773 08217 05715 05898 00877 C12 98.77 09726

C25 09968 09903 09740 09740 0.8255 05715 05898 00877 €25 97.05 09352

C50 09773 09838 09707 0.9806 0.8254 05762 06036 00877 C50 85.75 0.7105
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such as nuclei or algorithms that measure shape of objects
may suffer more from image degradations. It has been
shown that assessment of segmented IHC stained nuclei
in regions of densely packed cells in compressed images is
causing significant discrepancy [9]. The IHC algorithm
used in this study calculates the percentage of the gross
area of stained tissue. Thus, modest image degradation
does not seem to affect the algorithm. The LBP algorithm
used for tumor epithelium classification is inherently gray-
scale invariant, and therefore resists changes in pixel
values if the local order of pixels remains unaffected [13].
The automated tumor segmentation method seems to
be affected more by the increase of the image compres-
sion level than the automated IHC quantification
method. For the algorithms used in this study, the
authors would recommend using compression ratios up
to 1:50 and scaling levels down to 1:8 for automated IHC
assessment, and a compression ratio up to 1:25 for auto-
mated tumor segmentation. These suggested compres-
sion and scaling ratios would reduce the storage space
needed for the images to less than 0.03% and to 4.0%,
respectively, as compared to losslessly compressed and
non-scaled images (Table 3). Since these results might
not generalize to other algorithms, the authors suggest
each individual method to be validated prior to routine
use. Further studies are needed for determination of
compression levels sustaining adequate visual appear-
ance, and for different tissue types and other biomarkers.
Modest levels of image compression with the JPEG2000
method yields images that seem acceptable in quality by
the human observer, whereas higher levels of image scal-
ing lead to loss of details in the images [7]. In conclusion,
the storage space needed for digital whole-slide tissue
images can be reduced significantly with image compres-
sion and scaling, and studied automated image analysis
algorithms perform adequately with resulting images.
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