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Background

The morphology of a breast cancer tumour, as examined
through an optical microscope, is currently assessed
visually by the pathologist in parallel with making the can-
cer diagnosis. The grade of differentiation, which describes
how closely the morphology of the tumour resembles the
corresponding healthy tissue of an organ, is undisputedly
related to the outcome of breast cancer [1]. However,
tumour grade is largely regarded as an unreliable prognos-
tic factor due to its poor reproducibility [2]. The visually
determined morphology is afflicted with a poor inter- and
intra observer agreement, which prevents grade from
being fully utilized as an important outcome predictor.
The same pathologist may assign different grade to the
same tumour when assessment is repeated, and different
pathologists disagree to a substantial level when assessing
the same tumour [3].

Computational diagnostic tools for estimating the mor-
phological properties of cancer tissue would enable objec-
tive and reproducible alternative for diagnosis. This could
be achieved by fully utilizing the recent advances in digital
microscopy and computer vision [4,5]. Some attempts
have already been made for automated grading of histo-
pathological breast cancer images, but these studies have
covered only limited amount of data or produce just a par-
tial grading [6,7]. We propose a texture based algorithm
for automated classification of breast cancer morphology.
The method uses the recently introduced LPQ [8] as well
as LBP [9] descriptors and an SVM classifier. The LPQ
and LBP descriptors each form a histogram representing
the statistical texture properties and have been used earlier
in many texture analysis applications which include surface
inspection [9], tissue analysis [5], and face recognition [8],
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whereas SVM represents the state of the art among super-
vised learning based classification algorithms.

Material and methods

The image data set (n=1092) was extracted from a series
of digitized, whole-slide tissue microarray (TMA) sam-
ples from a nationwide cohort of breast cancer patients,
FinProg [10]. A single continuous area that contains
only tumor tissue was defined in each representative tis-
sue spot in the hematoxylin-eosin (HE) stained TMA
samples. The original tissue spots fit into an approxi-
mately 1600 x 1600 pixel image while the size of the
defined square areas was varying with dimensions in the
range 400—-1400 pixels. The images were scored by a
human observer into three classes according to mor-
phology: 1 (morphology resembling normal breast
epithelium, extensive tubular formation, n=182), 2 (inter-
mediate tubular formation, n=494), and 3 (morphology
least resembling normal breast epithelium, no tubular
formation; n=416). Examples of the three classes are
illustrated in Figure 1.

The images were transformed to gray scale and repre-
sented by LBP [7] and LPQ [8] texture descriptors. The
classification of the images into the three classes was done
using three one-versus-rest SVM classifiers with a radial
basis function kernel (RBF) combined with chi-square dis-
tance metric. The final class was chosen by selecting the
largest of the scores produced by the individual SVM clas-
sifiers. Given the training samples and their classes, an
SVM classifier learns a model for the data which aims to
separate the classes in space with a margin. In testing
phase, the SVM classifier assigns new data samples into
the classes based on the learned model. In our experi-
ments, the data was split into two halves for training and
testing of the SVM classifiers. We did additional experi-
ments with only the extreme class 1 and 3 samples. In this
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extensive tubular formation, n=182; Class 2 (center row): intermediate tubular formation, n=494; and Class 3 (bottom row): morphology least
resembling normal breast epithelium, no tubular formation, n=416. Images are classified into the three classes by a human observer.
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case, we used the same descriptors and a binary SVM clas-
sifier with an RBF kernel.

Results and discussion

The experiments were performed using different combina-
tions of LBP and LPQ descriptor variants as well as by var-
ious scales of the images. The best classification results
were achieved by combining the basic versions of LPQ and
LBP descriptors with radius r=1 and number of samples

p=38 into a 512-dimensional feature vector and using the
original image scale 1:1. The receiver operating characteris-
tic (ROC) curves illustrated in Figure 2, show the ratio of
the “true positive” and “false positive” samples in classifica-
tion when the threshold for each binary one-vs-rest SVM-
classifier score is changed. The area under the ROC curve
(AUC) is related to the fidelity of the classification result.
The AUCs for the ROC curves were: class 1 (extensive
tubule formation) vs. classes {2, 3}, 0.84; class 2 (moderate
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Figure 2 ROC curves showing the classification performance Receiver
SVM classifiers. Fourth ROC curve is for an SVM classifier separating classes
denoted which express the fidelity of the classification result.

operating characteristic (ROC) curves for each of the three one-vs-rest
1 and 3. Also the relative areas under the ROC curves (AUC) are

\

tubule formation) vs. classes {1, 3}, 0.65; and for class 3 (no
tubule formation) vs. classes {1, 2}, 0.83. If each image is
classified into the class with the highest SVM score, the
total classification accuracy is 62.0 %. The total classifica-
tion accuracy was improved by 2 % by using the LPQ
descriptor in addition to the traditional LBP descriptor. It
seems that the separation of intermediate class 2 from the
classes 1 and 3 is the most challenging task. This is under-
standable since image content in class 2 samples is a mix-
ture of the two neighbouring classes 1 and 3. If it would be

enough to separate only the extreme morphological classes
1 and 3 neglecting the class 2, a single binary SVM classi-
fier could be used. For this class 1 vs. class 3 classifier
AUC is 0.95 which is remarkably better than the results
for the one-vs-rest classifiers. The accuracy of class 1 vs.
class 3 classifier is 90 % (when threshold=0 for SVM score
is used). One option for better separation of class 2 could
be to do the analysis for smaller image areas which would
be classified as class 1 or 3. Then class 2 could be found as
an appropriately selected mixture of these areas.
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Conclusions

Histological grade of breast cancer is regarded as an
important prognostic factor, but not included in staging
guidelines due to the subjective nature of the assessment
process. In the current study, we propose a computer
vision method based on texture features and a classifier
utilizing supervised machine learning to discriminate
between cancer morphology as determined by a human
observer. The results obtained show that automated grad-
ing is feasible and that discrimination between different
levels of tubule formation can be performed with moder-
ate to high accuracy. By combining LBP and LPQ features
it is possible to improve the discrimination accuracy com-
pared to using only LBP alone. While the extreme mor-
phological structures according to tubule formation in the
breast cancer tissue are discriminated with high accuracy,
the recognition of the intermediate class should still be
improved.
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