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Modulation of insulin/IGFs pathways by sirtuin-7
inhibition in drug-induced chemoreistance
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Abstract

Background: Insulin and insulin-like growth factors (IGFs) are key regulators of metabolism and growth.
Recent evidences suggest a key role of these pathways in non-classical tissues and the metabolic pathways by
which these hormones exert their effects in neoplasia is unclear.

Aims: To study insulin/IGFs pathways in drug sensitive and resistant cancer cells representing breast cancer
(MCF-7), osteosarcoma (SaOS-2), and ovarian cancer (A2780) and to examine the effect of Sirtuin-7 (Sirt7) inhibition
on insulin/IGFs pathways in MCF-7 cell line.

Methods: Drug resistant cells were generated by continuous incubation of parental cell lines with stepwise
increases in Doxorubicin or Cisplatin over a period of 3 to 6 months. MCF-7 cells were transfected with cloned
hairpin siRNA template for Sirt7 using the Amaxa GmbH transfection system. mRNA expression of Sirt7, INSR, IRS-1,
IRS-2, IRS-4, IGF-1, IGF-2, MDR-1, MRP-1, BCRP was measured by qPCR and Sirt7 by standard Western blotting.
FITC-insulin uptake was imaged with Leica Confocal Microscope.

Results: Insulin receptor (INSR), insulin receptor substrate-1 (IRS-1) were inhibited in drug-induced resistance,
whereas IRS-2 was significantly induced in all the chemoresistant cells tested when compared to their parental
counterparts. IGF-1 and IGF-2 were also upregulated in all the drug resistant cells tested. Sirt7 was significantly
reduced in all chemoresistant cells tested. Knockdown of Sirt7 expression in human breast MCF-7 cell line by siRNA
induced premature senescence-like phenotype and multi-drug resistance, suggesting that this gene may play an
active role in regulating cancer cell response to stress. Suppression of Sirt7 selectively inhibited INSR and IRS-1,
whereas it had minimal effect on that of IRS-2. Sirt7 suppression in MCF-7 also inhibited insulin uptake.
Additionally, Sirt7 inhibition upregulated IGF-1, IGF-2 and IGFR expression.

Conclusion: Our data demonstrate that stress-induced Sirt7 inhibition significantly increases stress resistance and
modulates insulin/IGF-1 signaling pathways. More importantly, this study links Sir2 family proteins to insulin/IGF
signaling in drug-induced stress resistance in neoplasia.

Virtual Slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/
vs/1135426681234493
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Background
The autocrine and paracrine secretion of insulin and
insulin-like growth-factors (IGFs) 1 and 2 are key regula-
tors of metabolism and growth, which subserve energy
production and growth stimulation, respectively, in can-
cer cells. Several recent evidences suggest a key role of
these pathways in non-classical tissues. It is unclear if
these hormones exert their effects in a similar manner in
neoplasia. Receptors for IGFs and insulin are widely
expressed on normal and cancerous tissues. The insulin
receptor (INSR) and the IGF-1R are both tyrosine kinase
receptors and are structurally similar and activate almost
identical intracellular signaling events. Insulin and IGFs
receptors have been reported in various cancers includ-
ing breast [1-9], lung [10], colon [11], melanoma [12],
cervix [12], renal cell carcinoma [13], fibrosarcoma [14],
Hodgkin’s lymphoma [15], insulinoma [16], as well as in
one hematologic malignancy, lymphoblastic leukemia
[14]. INSR and IGFRs have likewise been well character-
ized on the cell membranes of these cancers [11,17-19].
The classical view presents the INSR as being respon-
sible for the metabolic functions and IGF-1R being re-
sponsible for the growth, proliferation, protection against
apoptosis. These differences may be explained partially by
the slight structural differences and tissue distribution;
however, a rational explanation for the divergent biological
effects is the interactions with specific substrates. Al-
though there are two receptors for IGFs, IGF-1R and IGF-
2R, IGF-2R does not transduce a signal and acts to reduce
the bioavailability of IGF-2 by sequestering it away from
IGF-1R and thus acts as a tumor suppressor [20]. INSR,
on the other hand, has two isoforms. INSR-A isoform is
commonly expressed by neoplastic tissue whereas INSR-B
isoform is commonly expressed by classic-insulin sensitive
tissue [21,22]. This preferential expression of INSR iso-
forms is unclear. Insulin is expressed exclusively by pan-
creatic β cells whereas IGF-1 and IGF-2 are produced in
the liver and neoplastic tissue. IGF-2 gene is imprinted
and its overexpression in neoplasia could result from the
loss of imprinting. Additionally, the activity of IGFs is
modulated by IGFBPs which limit IGF access to IGF-1R
and thus inhibiting IGFs. However, overexpression of cer-
tain IGFBPs, in particular IGFBP2 and IGFBP5, results in
increased activity of IGF [23,24].
The role of Sirt7 in cancer, an aging-associated disease,

is still poorly understood. Sirt7 is associated with active
rRNA genes (rDNA) and histones [25]. Overexpression
of Sirt7 increased RNA polymerase I (Pol I)-mediated
transcription, whereas knockdown of Sirt7 or inhibition
of its catalytic activity resulted in decreased association
of pol I with rDNA and reduced pol I transcription. De-
pletion of Sirt7 stopped cell proliferation and triggered
apoptosis [25]. We have recently demonstrated that Sirt7
is inhibited in drug-induced resistance. Inhibition of Sirt7
induces stress-induced premature senescence (SIPS) lead-
ing to aggressive tumor behavior [26].
In this study, we investigated insulin/IGF pathway in

drug-induced resistance and the relationship of Sirt7 to
this pathway since it has been shown that reduction in
insulin/IGF-1 signaling extends the lifespan of C. elegans,
Drosophila and mice [27-31]. Several studies have also
shown that reduced insulin/IGF-1 signaling protects
against oxidative damage and other forms of stress
[27,28,30]. On the other hand, increased levels of IGF-1
are associated with malignant and non-malignant tumoro-
genesis [32-34]; and IGF-1 has been shown to inhibit
chemotherapy-induced apoptosis by activation of the
phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Add-
itionally, inhibition of IGF-1 receptor has been shown to
increase the efficacy of etoposide and carbaplatin [35,36].
We hypothesized that stress-induced inhibition of Sirt7,
results in modulation of insulin/IGF pathways suggesting
a link between these pathways.

Methods
Establishment of chemoresistant cells
Human breast cancer MCF-7 and osteosarcoma SaOS-2
cell lines were purchased from the ATCC. The ovarian
cancer A2780 cells and their corresponding Cisplatin re-
sistant cells were a generous gift from Dr. Mary J Hendrix
(Children’s Memorial Hospital, Chicago, IL). Doxorubicin-
resistant MCF-7 and SaOS-2 cells were generated by
continuous incubation of parental cell lines with step-
wise increases in doxorubicin concentration over a
period of 3 to 6 months. Cells were grown in Minimum
Essential Medium (MEM, Eagle) with 2 mM L-glutamine
and Earle’s BSS adjusted to 1.5 g/L sodium bicarbonate,
0.1 mM non-essential amino acids, 1.0 mM sodium pyru-
vate, and 10% fetal bovine serum.

Cell transfection
MCF-7 cells were transfected with pSilencer 4.1-CMV
neo vector (Ambion, Inc., Austin, TX) containing the
cloned hairpin siRNA template for Sirt7 using the Amaxa
GmbH transfection system (Amaxa, Inc., Gaithersburg,
MD). Three constructs were generated targeting three dif-
ferent regions of Sirt7. Mock cells were transfected with
pSilencer 4.1-CMV neo-vector that expresses a hairpin
siRNA with limited homology to any known sequences in
the human. This method exhibited 80% transfection effi-
ciency in MCF-7.

mRNA Quantification by Real-Time RT-PCR
Total RNA was isolated using the Ambion Aqueous kit
(Ambion). The quality and quantity of the isolated RNA
was determined using a Bio-Rad Experion automated elec-
trophoresis system (Hercules, CA). Then, 1 μg of total
RNA was reverse-transcribed using Advantage RT-for-
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PCR Kit (Clontech; Mountain View, CA). Real time
RT-PCR was performed with a Cepheid Smart Cycler
(Sunnyvale, CA), using 2 μL cDNA, 10 μL Sybergreen
Master mix (Qiagen; Valencia, CA) and 0.5 μL of 20 μM
gene-specific primers: Sirt7-F: CCTCCTGCGTTCCCAA-
CAG; Sirt7-R: GCTTCCCAGTTCAGAGGCT; INSR-F:
CGTCCCCAGAAAAACCTCTTC; INSR-R: ACGGC-
CACCGTCACATTC; IRS-1-F: CGCCGCTCAAGTGAG-
GATTTAAGC; IRS-1-R: ATGCATCGTACCATCTACT
GATGAGG; IRS-2-F: ACAATGGTGACTACACCGAG;
IRS-2-R: CTGCTTTTCCTGAGAGAGAC; IRS-4-F: CTT
CACTCGCGACCAAGCGACAAG; IRS-4-R: GTGCCCA
TGCTTCTGTTTCCGCAG; IGF-1-F: GATCCTTTGCT
CTGCACGAGTTACCTG; IGF-1-R: TTTGTGGCTCTT
GAGAGGCAGGGACT; IGF-2-F: CCTCCAGTTCGTCT
GTGGG; IGF-2-R: CACGTCCCTCTCGGACTTG; MD
R-1-F (ABCB1): TGACATTTATTCAAAGTTAAAAG
CA; MDR-1-R: TAGACACTTTATGCAAACATTTCAA;
MRP-1-F (ABCC1): CGGAAACCATCCACGACCCTAA;
MRP-1-R: TCATGAGGAAGTAGGGCCCAAA; BCRP-F
(ABCG2): CCGCGACAGTTTCCAATGACCT; BCRP-R:
GCCGAAGAGCTGCTGAGAACTGTA; GAPDH-F: TG
CACCACCAACTGCTTAGC; GAPDH-R: GGCATGGA
CTGTGGTCATGAG; β-actin-F: TGACTGACTACCT-
CATGAAGATCC; β-actin-R: CCATCTCTTGCTCGAA
GTCCAG; The specificity and size of the PCR products
were tested by adding a melt curve at the end of the am-
plifications, analysis on a 2% agarose gel and sequencing
of the bands. All values were normalized to GAPDH and
β-actin.
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Figure 1 mRNA expression of mdr1, MRP1 and BCRP. mRNA expression
drug resistant cells and the respective parental cells normalized to GAPDH
all Doxorubicin resistant cells (MCF-7 and SaOS2). No significant increase in
Sirt7, β-actin and GAPDH Western blotting
Western blotting was carried out by standard Western
blotting technique. Total cellular homogenates were pre-
pared using Pierce mammalian extraction reagent (Pierce,
Rockford, IL), according to the instructions provided by
the manufacturer. Protein quantization was performed by
BCA method (Pierce Biotechnology, Inc., Rockford, IL).
A total of 60 μg of cell lysates were boiled in 2X SDS
buffer (100 mM Tris–HCl, 4% SDS, 20% glycerol, 0.06%
bromophenol blue, and 200 mM DTT), proteins sepa-
rated by SDS-PAGE and then transferred to PVDF
membrane. Membranes were blocked in blocking buffer
(5% dried milk powder, 1%TBS-T) after which the pri-
mary antibodies against GAPDH or β-actin (Santa Cruz
Biotechnology Inc., Santa Cruz, CA) or Sirt7 (Sigma, St.
Louis, MO) were added. The washed blots were then in-
cubated in secondary antibody (goat anti-rabbit; Bio-
Rad) diluted to 1:10000 and proteins were visualized
using SuperSignal West Dura Extended Duration Sub-
strate as per manufacturer’s specifications (Pierce Chemical,
IL). Images were captured using ChemiDoc XRS system
(Bio-Rad, Hercules, CA).

Insulin uptake by MCF-7 cells
MCF-7 cells transfected with either Sirt7 siRNA or mock
were cultured overnight in chamber slides in MEM
medium with a low (0.1%) FBS and at a confluency of
50%. Imaging of fluorescein isothiocyanate-insulin (FITC-
insulin) uptake by MCF-7 cells transfected with either
Sirt7 siRNA or mock were investigated using a fluorescence
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measured by real time PCR of A) mdr1, B) MRP1 and C) BCRP in
mRNA expression. mRNA expression of mdr1 is significantly higher in
mdr1 expression by Cisplatin resistant A2780 was observed.



B 

Si
rt

7/
-a

ct
in

 N
or

m
al

iz
ed

 
P

ro
te

in
 R

at
io

0

20

40

60

80

100

120 Parental
Resistant

*

*

*

C 

MCF7 SaOS2 A2780MCF7 SaOS2 A2780

Si
rt

7 
N

or
m

al
iz

ed
 

G
en

e 
E

xp
re

ss
io

n

0.000

0.002

0.004

0.006

0.008
Parental
Resistant 

* *

*

A 

Figure 2 mRNA and protein expression of Sirt7. A) mRNA expression of Sirt7 normalized to GAPDH mRNA expression by RT-PCR, where the
expression of Sirt7 is reduced in all chemoresistant cell lines tested (MCF-7, SaOS2, and A2780); B) A representative Western blot for Sirt7 protein
expression showing a significant reduction of Sirt7 expression in all drug-resistant cells (MCF-7, SaOS2, and A2780); C) Densitometric quantitation
of Sirt7/β-actin protein expression ratio.
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microscope (Leica TCS STED Confocal Microscope,
Leica Microsystems Ltd., UK). Each experiment was car-
ried out in triplicate.

Results
The relationship between the expression of Sirt7 and P-
glycoprotein, coded for by mdr1, BCRP, and MRP-1 was
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Figure 3 mRNA and protein expression of INSR in drug-resistant cell
expression by RT-PCR; B) A representative Western blot for INSR protein ex
drug-resistant cell lines (MCF-7, SaOS2, and A2780); C) Densitometric quant
investigated using quantitative PCR in both the wild type
cells and their respective drug resistant cell line. The
mRNA expression levels of several drug resistance genes
(mdr1: multi-drug resistance gene-1; BCRP: breast can-
cer resistance protein; and MRP1: multi drug resistance
associated protein-1) in MCF-7/Dox, SaOS-2/Dox, and
A2780/Cis were measured by real-time PCR. mRNA
MCF7 SaOS2 A2780
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pression showing a significant reduction of INSR expression in
itation of INSR/GAPDH protein expression ratio.
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Figure 4 mRNA expression levels of IRS-1, IRS-2 and IRS-4. mRNA expression of A) IRS-1; B) IRS-2; and C) IRS-4 in drug resistant and their
corresponding parental cells (MCF-7, SaOS2, and A2780).
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Figure 5 mRNA expression levels of IGF-1 and IGF-2 in drug
resistant and their corresponding parental cells. mRNA expression
of A) IGF-1 and B) IGF-2 in drug resistant and their corresponding
parental cells (MCF-7, SaOS2, and A2780).
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expression of mdr1 was consistently higher in the drug-
resistant cells when compared to the parental cells
(Figure 1A). The expression of MRP1 and BCRP was the
same in MCF-7/Dox and parental cells, slightly upregulated
in SaOS-2/Dox and inhibited in A2780/Cis (Figures 1A
& 1B). Sirt7, on the other hand, was inhibited in all the
drug resistant cells examined (Figure 2).
To evaluate insulin/IGFs pathways in chemoresistance,

we measured INSR, IRS-1, IRS-2, IRS-4, IGF-1 and IGF-
2 mRNA. INSR was significantly inhibited in all the drug
resistant cells when compared to their parental cell lines
at the mRNA and protein levels (Figure 3). Although
IRS-1 is a substrate most commonly observed in IGF-
INSR binding with IGF-1 and IGF-2 [37], IRS-1 mRNA
expression was inhibited in all the drug resistant cells
lines (Figure 4A). However, IRS-2 mRNA expression was
upregulated in all the drug resistant cell lines tested
(Figure 4B). It is also known that IRS-4 is activated via
IGF-1/IGF-INSR binding although the exact affect of
IRS-4 is still unknown. As shown in Figure 4C, the
mRNA expression of IRS-4 was not consistently affected
in the drug-induced cell lines used in this study.
The mRNA expression of IGF-1 and IGF-2 is consist-

ently increased in all the cancer cell lines compared to
their respective parental cells except MCF-7 cell line which
did not show a significant increase in IGF-1 (Figure 5).
This observation establishes an inverse correlation be-
tween the expression of IGF-1 and Sirt7, and a positive
correlation between Sirt7 and INSR. To establish a
causal relationship between Sirt7 and INSR inhibition
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and IGFs upregulation, Sirt7 in MCF-7 cells was inhib-
ited with Sirt7 siRNA (Figure 6). Inhibition of Sirt7
significantly inhibited INSR and slightly upregulated
IRS-1. It also upregulated the expression of IRS-4, IGF-
1 and IGF-2. Insulin uptake was also inhibited following
Sirt7 inhibition in MCF-7 (Figure 7). Sirt7 inhibition in
MCF-7 resulted in inhibition of FITC conjugated insulin
uptake when at added at lower concentrations (0.3-3.0
nM). However, a slight uptake was observed at 1 μM
after 2 hours of addition. Insulin uptake by mock trans-
fected MCF-7 cells was seen even at 0.3 nM (physio-
logical) concentration with 30 min of incubation. This
increased insulin uptake increased with time and con-
centrations. As expected, 10% FBS inhibited the uptake
of insulin (data not shown).

Discussion
Multi drug resistance (MDR) might be simultaneously in-
volved in the participation of multiple genes and molecu-
lar pathways. Several mechanisms of MDR have been
proposed, including the transporter-based MDR caused
A B 

Figure 6 Protein expression of Sirt7 and mRNA expression of insulin/
Protein expression of Sirt7 following inhibition of Sirt7 in MCF-7 by siRNA;
and β-actin in MCF-7 following inhibition of Sirt7 by siRNA.
by the activation of transporter proteins such as P-
glycoprotein (Pgp) and the non-transporter-based MDR,
which is caused by altered activity of enzyme systems
such as glutathione S-transferase π (GST-π). Expression
of Pgp, GST-π and topoisomerase II were found to be
useful for identifying drug resistance in gastric carcin-
oma [38]. Sirt7 expression was inversely correlated with
the increased expression of the mdr1 gene in drug-
induced resistance. Sirt7 inhibition was also observed in
Cisplatin-resistant cells, a non p-glycoprotein substrate,
suggesting that the anti-apoptotic effect of Sirt7 inhib-
ition is a non p-glycoprotein-dependent. Similarly, Sirt7
inhibition-induced drug resistance is a non-p53 medi-
ated mechanism since the osteosarcoma SaOS-2 has
p53 gene rearrangements and deletions [39] and both
have decreased Sirt7 expression. A recent study by which
Sir2 was overexpressed in drosophila flies resulted in pro-
motion of caspase-dependent but p53-independent apop-
tosis [40].
Replicative senescence likely results from the shorten-

ing of telomeres to such an extent that the chromosome
IGF transduction pathway protein following inhibition of Sirt7. A)
B) mRNA expression of Sirt7, INSR, IRS-1, IRS-2, IRS-4, IGF1, IGF2, GAPDH
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Figure 7 FITC-conjugated Insulin uptake by MCF-7 following Sirt7 inhibition. A) Representative image for FITC-conjugated Insulin uptake
by MCF-7 transfected with either mock or Sirt7 siRNA vectors. Stably transfectcted MCF-7 cells were cultured in chamber slides in 0.1% FBS
containing medium overnight. Cells were then incubated with FITC-conjugated Insulin (0 and 1000 nM) for 2 hours and then washed, fixed and
analyzed by Leica confocal microscope. Nucleus was counterstained with DAPI (blue) while cytoplasm was counterstained with Rhodamine
Phalloidin (red); B) Insulin uptake by MCF-7 Mock transfected and incubated with different FITC-labeled insulin for different time intervals; and
C) Insulin uptake by MCF-7 cells transfected with Sirt7 siRNA.
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ends are not fully masked from recognition by the pro-
teins responsible for double strand break repair. Once a
critical shortened telomere length is attained, cell senes-
cence is triggered. SIPS is not prevented by telomere
elongation. It is accompanied by intense genetic in-
stability with gross chromosomal abnormalities, pos-
sibly due to illegitimate DNA recombination, and is
associated with relative inability to undergo apoptosis
[41]. Recently, telomerase reverse transcriptase (hTERT)
mRNA expression was shown to be significantly increased
in gastric cancer, which was related with a worse differen-
tiation and drug-resistance to Adriamycin [42]. Whether
modulation of insulin/IGF pathways by Sirt7 inhibition
could mediate hTERT expression is of interest and it is
the subject of further investigation.
Our data demonstrate clearly that drug resistance is as-

sociated with upregulation of IGF/IRS-2 pathway through
Sirt7 inhibition. Most metastatic cancers express higher
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levels of IRS-2 as compared to IRS-1. IGF-1 dependent
activation of a cell causes enhanced IRS-2 signaling
and increased IGF-I induced migration, adhesion and
anchorage-independent growth. Moreover, decreased
levels of IRS-2 significantly affected cells response to
IGF-1 signaling. Although IRS-1 is the predominant
substrate activated via IGF-1-mediated cell proliferation
and protection from chemotherapy induced apoptosis,
IRS-2 links between IGF-1 and integrins, leading to its
metastatic behavior [43]. IGF-1 and IGF-1R activated
cells have the ability to avoid apoptosis by regulating the
actions of proteins such as caspase-3 and other apop-
totic factors such as IL-3 and TNF-α [44,45]. Over ex-
pression of IGF-1R in in vivo and in vitro models of
testicular and ovarian cancer inhibited Cisplatin-induced
apoptosis [46]. In these tumors, however, induction of
apoptosis by Cisplatin is not necessarily dependent on
wild-type p53 [47-49]. Similarly, in human breast model
(HBL100), IGF-1 protected cells against apoptosis induced
by 5-fluorouracil, methotrexate, tamoxifen, or camptothe-
cin [50].
Our study links Sirt7 to INSR and could explain the

cytotoxic potentiating effects of insulin [51,52]. Insulin
exerts this effect when it is given in combination with
another chemotherapeutic agent. In MCF-7 human breast
cancer cell line, methotrexate-induced cytotoxicity in-
creased as much as 10,000-fold when combined with insu-
lin [53]. Similarly, incubation of MDA-MB-231 with
insulin resulted in an increased intracellular accumulation
of the DNA-intercalating agent ellipticine and a concomi-
tant increase in cytotoxicity. It was hypothesized that insu-
lin imposes metabolic modification within cancerous cells,
rendering them more sensitive to the effects of methotrex-
ate while another study suggested an increase in the cap-
acity to accumulate free intracellular methotrexate in
MCF-7, a result of the increase in the intramembrane
methotrexate transport system [54]. The cross-reaction of
insulin with IGF receptors on cancer cell membranes in-
creases the S-phase fraction in tumors, increasing the cells
susceptibility to the cytotoxicity of anticancer drugs [6].
Addition of insulin to an asynchronous population of
breast cancer cells increased the S-phase fraction to 66%
compared to 37% in the controls [3]. Such an increase in
the S-phase fraction would have a significant effect on the
cytotoxicity of anticancer drugs, particularly the cell-cycle,
phase-specific agents. Interestingly, Insulin differentiates
selectively between cells of normal versus cancerous tis-
sues. Insulin binds dominantly to tumor cells rather than
to fat and fibrous tissue within tumors as demonstrated by
autoradiographic studies [17]. Notably, breast cancer cell
membranes have been found to have an average of seven
times more INSR [55] and 10 times more IGF receptors
[2] than normal breast and other tissues. Therfore, insulin
predominantly targets cancer cells, with a relative sparing
of host normal tissues. However, our data show clearly a
significant inhibition of INSR expression by all the drug-
induced resistant cells tested and as result would limit in-
sulin potentiating therapy. Thus, drugs inducing Sirt7 may
increase insulin cytotoxic potentiating effects by prevent-
ing INSR inhibition.
It is important to define the role of INSR in cellular

response to stress with regards to development of drug
resistance in cancer. Besides the possible discovery of a
novel drug resistance mechanism, our results indicate
that stress resistance in cancer shares common signaling
pathways with that in aging. It would be of great interest
to examine Sirt7/INSR pathway in aging. Since our data
establish a causal relationship and implicate Sirt7 as a
regulator of the insulin/IGF pathway, our data may also
suggest a role of Sirt7 in hyperglycemia associated with
chemoresistance.
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