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Abstract

Background: Despite new treatment options for hepatocellular carcinomas (HCC) recently, 5-year survival remains
poor, ranging from 50 to 70%, which may attribute to the lack of early diagnostic biomarkers. Thus, developing
new biomarkers for early diagnosis of HCC, is extremely urgent, aiming to decrease HCC-related deaths.

Methods: In the study, we conducted a comprehensive characterization of gene expression data of HCC based on
a bioinformatics method. The results were confirmed by real time polymerase chain reaction (RT-PCR) and TCGA
database to prove the credibility of this integrated analysis.

Results: After integrating analysis of seven HCC gene expression datasets, 1167 differential expressed genes (DEGs)
were identified. These genes mainly participated in the process of cell cycle, oocyte meiosis, and oocyte maturation
mediated by progesterone. The results of experiments and TCGA database validation in 10 genes was in full
accordance with findings in integrated analysis, indicating the high credibility of our integrated analysis of different
gene expression datasets. ASPM, CCT3, and NEK2 was showed to be significantly associated with overall survival of
HCC patients in TCGA database.

Conclusion: This method of integrated analysis may be a useful tool to minish the heterogeneity of individual
microarray, hopefully outputs more accurate HCC transcriptome profiles based on large sample size, and explores
some potential biomarkers and therapy targets for HCC.

Keywords: Hepatocellular cancer, Differentially expressed gene, Integrated analysis, Expression profile, Real time
polymerase chain reaction, TCGA validation

Background
Hepatocellular carcinoma (HCC) is one of the most fre-
quently occurring malignant tumors worldwide [1]. Risk
factors of HCC are well recognized including gender,
infection by hepatitis B virus or hepatitis C virus, cirrhosis,
metabolism diseases, toxins, excess alcohol consumption,
and smoking. HCC varies with wide geography, and is
more prevalent in Asia, Africa, and southern Europe. It
has been well defined that experiencing surgery for early
HCC patients could achieve a higher curative resection

rate (80.5%) [2], and finally have a better survival rate.
However, patients with early HCC frequently manifest
non-typical symptoms, hence, most of patients are diag-
nosed with advanced HCC when seeing a doctor, resulting
in a low 5-year survival rate, ranging from 50 and 70% [3].
Therefore, developing biomarkers for early diagnosis is be-
ing emphasized to prolong survival in patients with HCC.
Over the last decades, large efforts have been made to

promote the early diagnosis of HCC. Alpha-fetoprotein
(AFP) has been the most commonly used tumor biomarker
in the liver, testicles, and ovaries [4]. Highly sensitive and
specific biomarkers need to be developed in HCC diagno-
sis. Glypican-3 (GPC3), a membrane-associated heparan
sulfate proteoglycan, is up-regulated in HCC. Additionally,
GPC3 involved in hippo pathway to exert its function in
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HCC cell proliferation. GPC may be applied in clinical
practice as a novel diagnostic biomarker [5].
Additionally, some researchers have attempted to

employ prognostic markers for predicting HCC recur-
rence. Villa E et al. detected whole genome microarray ex-
pression profiling of 161 HCC samples, and revealed that
five-gene signature (ANGPT2, NETO2, NR4A1, DLL4,
ESM1) was able to predict fast growth and worst survival
of HCC patients [6]. The exploration of prognostic
markers may facilitate individualized therapies.
Recently, detection of genome-wide gene transcripts

expressed in a given tissue type is becoming more and
more feasible with advent of high-throughput technolo-
gies, such as microarray and RNA-seq. The application of
microarray-based gene expression profiling has produced
tremendous information, and provided mechanistic
insights into the oncogenic process of HCC [7]. However,
although many microarray studies of HCC have been
performed [8–11], each of study holds a somewhat differ-
ent view due to the heterogeneity caused by the variety in
clinical samples, platform, analytical approach, etc. Toward
this end, an integrated analysis of seven HCC gene expres-
sion datasets was conducted to identify differential
expressed genes (DEGs) between tumor and normal
tissues, revealing a common biological thread that linked
the disparate microarray studies. Ten genes were selected
for further real time polymerase chain reaction (RT-PCR)
and TCGA database validation, to prove the credibility of
this integrated analysis. We expected our study would be
of some value for the future diagnosis and therapy of HCC
in clinic.

Methods
Eligible HCC gene expression datasets
The raw gene expression datasets of HCC and control
samples were selected and downloaded in the Gene
Expression Omnibus (GEO) database. The datasets meet-
ing the following criteria were included: i) the expression
profile of whole genome; ii) data from the tumor and
tumor-adjacent normal liver tissues from HCC patients in
clinic; iii) raw data or standardized data. Cirrhotic liver
tissue sets, non-human sets, and integrated analysis of gene
expression profiles were excluded.

Identification of HCC gene expression profile
We selected the Z-score transformation [12] method to
normalize raw data from different platforms. The MATrix-
LABoratory (MATLAB) software was applied to calculate
differently expressed probe sets between tumor and
tumor-adjacent normal tissue, using gene specific t-test.
The genes with FDR ≤ 0.05 were selected as the signifi-
cantly differentially expressed genes (DEGs). Heat map
analysis was conducted using the “heatmap.2” function of
the R/Bioconductor package “gplots” [13].

Gene ontology (GO) of differentially expressed genes
The GO and pathway enrichment was analyzed via the on-
line software GENECODIS to facilitate the interpretation
of biological roles of DEGs (http://genecodis.cnb.csic.es)
[14]. The GO functions of the DEGs were determined
according to different categories including biological
process, molecular functions, and cellular components. In
addition, pathway enrichment analysis was based on the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
database.

Protein-protein interaction (PPI) network construction
In order to find candidate genes involved in the onco-
genesis and hepatic dysfunction of HCC, PPI networks
of significantly DEGs were constructed according to the
data from Biological General Repository for Interaction
Datasets (BioGRID) (http://thebiogrid.org/). Among the
candidate genes, the PPI networks of the top 20 most
significantly dysregulated genes were visualized via
Cytoscape [15].

RNA Isolation and RT-PCR validation
Tumor and matched adjacent normal liver tissues which
were obtained from five HCC patients in the current
study, were frozen immediately after surgery, and were
stored at −135 °C for RNA extraction. Frozen sections
were made and evaluated independently by senior pa-
thologists. The study was approved by the First Affiliated
Hospital of PLA General Hospital ethnics committee.
The ethics committee approved the relating screening,
inspection, and data collection of the patients, and all
subjects signed a written informed consent form. All
works were undertaken following the provisions of the
Declaration of Helsinki.
The whole RNA of liver tissue for each sample was ex-

tracted using RNAeasy Mini Kit (Qiagen, Valencia, CA)
according to the manufacture’s protocol. Ten genes were
randomly selected from the 20 most significantly DEGs.
Primers for the ten genes were designed using PrimerPlex
2.61 (PREMIER Biosoft, Palo Alto, CA) (Additional file 1:
Table S1). Expression levels of genes were screened by
SYBR (Applied Biosystems/Life Technologies, Carlsbad,
CA) in ABI 7500 Real Time PCR System (Applied Biosys-
tems, Carlsbad CA). Relative gene expression was calcu-
lated with Data Assist Software version 3.0 (Applied
Biosystems/Life Technologies) and human actin gene was
used as a reference. The expression level of each gene was
determined according to the method of 2-△△ct.

TCGA database validation of selected genes in HCC
patients
Through the online validation tools, the expression status
of selected genes in HCC were determined in TCGA data-
base (https://genome-cancer.ucsc.edu/), assessing their
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mRNA expression patterns in HCC patients (N = 423)
[16]. The selected genes were also evaluated for the overall
survival time of HCC patients in correlation with their
expression pattern (http://cbioportal.org) in the TCGA
database (N = 442) [17].

Results
Candidate genes involved in the occurrence of HCC
Seven microarray datasets of HCC were identified accord-
ing to the including criteria. Among of them, GSE17548,
GSE33006, GSE17856, and GSE1481 didn’t contain the
gene expression data of tumor-adjacent normal liver
tissues. 267 HCC samples and 67 control samples were
enrolled in the integrated analysis. The information of each
microarray dataset was shown in Table 1. Based on micro-
array datasets available for integrated analysis, a total of
1167 DEGs were identified, among which, 628 genes were
up-regulated and 539 genes were down-regulated. The de-
tailed information of the 20 most significantly up-regulated

or down-regulated genes were shown in Additional file 1:
Table S2. The top 50 most significantly DEGs were dis-
played in a heat map across different HCC microarray
datasets (Fig. 1).

GO and KEGG analysis of the candidate genes
Mitotic cell cycle (GO: 0000278, 4.71E-36) and cell div-
ision (GO: 0051301, 7.83E-26) was significantly enriched
upon the category of GO biological progress, and protein
binding (GO: 0005515, 3.88E-85) and nucleotide binding
(GO: 0000166, 2.71E-41) was significantly enriched upon
the category of GO molecular function. While for the
category of GO cellular component, cytoplasm (GO:
0005737, 1.77E-90) and nucleus (GO: 0005634, 5.20E-59)
was significantly enriched (Table 2). Based on KEGG data-
base, the 1167 DEGs were involved in 99 signal pathways,
including cell cycle, oocyte meiosis, oocyte maturation
mediated by progesterone, pathways in cancer, p53 signal-
ing pathways, production of phagosome, metabolism of

Table 1 Information of the expression profiles

GEO ID Platform Samples
(cancer:normal)

Sample
source

Country Time

GSE54236 GPL6480 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Probe Name
version)

64:19 In vivo Italy 2014

GSE17548 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 17:0 In vivo Turkey 2013

GSE46408 GPL4133 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Num-
ber version)

6:6 In vivo Taiwan 2013

GSE33006 GPL570 [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array 3:0 In vivo Taiwan 2011

GSE17856 GPL6480 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Probe Name
version)

43:0 In vivo USA 2010

GSE14811 GPL8177 KRIBB_Human_14K 56:0 In vivo Korea 2009

GSE14323 GPL96 [HG-U133A] Affymetrix Human Genome U133A Array/GPL571 [HG-U133A_2]
Affymetrix Human Genome U133A 2.0 Array

81:43 In vivo USA 2009

Fig. 1 Heat-map image of the top 50 significantly up-regulated or down-regulated genes in HCC
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Table 2 Partial results of gene ontology (GO) analysis

GO ID GO term No.of genes F.D.R

Biological process

GO:0000278 mitotic cell cycle 71 4.71E-36

GO:0051301 cell division 58 7.83E-26

GO:0000087 M phase of mitotic cell cycle 33 4.04E-22

GO:0007049 cell cycle 65 1.37E-21

GO:0000236 mitotic prometaphase 30 2.02E-20

GO:0007067 mitosis 39 1.04E-17

GO:0007165 signal transduction 101 8.36E-16

GO:0000086 G2/M transition of mitotic cell cycle 25 1.82E-11

GO:0006260 DNA replication 27 2.81E-10

GO:0000075 cell cycle checkpoint 25 3.30E-10

GO:0007155 cell adhesion 54 5.13E-10

GO:0000082 G1/S transition of mitotic cell cycle 25 2.88E-09

GO:0006915 apoptotic process 54 5.52E-09

GO:0008285 negative regulation of cell proliferation 38 1.49E-08

GO:0007596 blood coagulation 44 5.51E-08

Molecular function

GO:0005515 protein binding 405 3.88E-85

GO:0000166 nucleotide binding 203 2.71E-41

GO:0005524 ATP binding 147 1.90E-30

GO:0046872 metal ion binding 171 7.35E-12

GO:0016301 kinase activity 30 2.35E-08

GO:0003824 catalytic activity 38 1.41E-07

GO:0016787 hydrolase activity 69 3.22E-07

GO:0016491 oxidoreductase activity 41 3.62E-07

GO:0009055 electron carrier activity 24 3.88E-07

GO:0019901 protein kinase binding 28 6.24E-07

GO:0003677 DNA binding 103 2.55E-06

GO:0004672 protein kinase activity 29 4.58E-06

GO:0019899 enzyme binding 23 6.10E-06

GO:0004674 protein serine/threonine kinase activity 34 9.76E-06

GO:0008017 microtubule binding 14 1.00E-05

Cellular component

GO:0005737 cytoplasm 455 1.77E-90

GO:0005634 nucleus 403 5.20E-59

GO:0005829 cytosol 214 3.68E-47

GO:0005654 nucleoplasm 99 4.43E-24

GO:0005730 nucleolus 129 2.06E-22

GO:0005694 chromosome 45 1.28E-17

GO:0005576 extracellular region 141 1.74E-17

GO:0005615 extracellular space 77 1.18E-15

GO:0005886 plasma membrane 206 4.70E-14

GO:0005856 cytoskeleton 77 6.31E-14

GO:0016020 membrane 221 1.36E-12

Wang et al. Diagnostic Pathology  (2017) 12:4 Page 4 of 10



fatty acid, cytokines-cell factor receptor interactions, prion
diseases, etc. (Table 3).

PPI Network Constructions
For PPI networks of the 20 most significantly dyregulated
genes, they consisted of 377 edges and 503 nodes. Three
hub proteins were identified in this network, including
CCT3 (121°), NDC80 (98°), and ASPM (93°) (Fig. 2).

Experimental and TCGA database validation of selected
genes in HCC patients
Ten genes (ASPM, CAP2, CCT3, NEK2, SNRPE, CLEC4M,
DCN, ECM1, RND3 and SPINT2) were randomly re-
trieved from the 20 most significantly up-regulated or
down-regulated genes, respectively. After performing RT-
PCR, the expression levels of selected 10 genes in clinical
samples were identical with the results of the integrated
analysis. For the ten genes, the mRNA expression was
statistically different between tumor and matched adjacent
normal liver tissues (Fig. 3; Additional file 1: Table S3)
(P < 0.01). Furthermore, results of TCGA database
validation indicated that these genes showed similar
expression trends to those obtained from the integrated
analysis (Fig. 4). Among the ten genes, only the ASPM,
CCT3, and NEK2 showed significant association with

overall survival time of HCC patients in TCGA data-
base (P < 0.05) (Fig. 5).

Discussion
It is generally accepted that the altered gene expression
pattern of a cancer tissue should be associated with the
initiation and maintenance of the malignant phenotype.
Previous studies have identified several HCC gene ex-
pression profiles [18–21]. However, there wasn’t a com-
mon pattern among disparate studies for HCC. While in
this study, we integrated different microarray studies to
identify a precise gene expression profile for HCC with
more statistical power supported by large sample size. In
the current study, an integrated analysis of seven HCC
microarray datasets was conducted, and showed that
1167 DEGs were identified, among which 628 genes
were up-regulated and 539 genes were down-regulated.
These genes mainly participated in the process of cell
cycle, oocyte meiosis, and oocyte maturation mediated
by progesterone.
In the current study, further annotation and PPI network

analysis of the 20 most significant DEGs were conducted.
Most of the 20 genes were involved in the pathways of cell
cycle, cytokines-cell factor receptor interactions, and intra-
cellular signaling cascades, and their involvements in HCC
have also been reported [22–26]. The functions of the 20

Table 2 Partial results of gene ontology (GO) analysis (Continued)

GO:0005819 spindle 25 1.40E-12

GO:0000777 condensed chromosome kinetochore 18 2.41E-11

GO:0005874 microtubule 34 4.10E-10

GO:0005622 intracellular 122 4.20E-10

Table 3 Partial results of Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

KEGG ID KEGG term No. of genes FDR

hsa04110 Cell cycle 29 1.08E-14

hsa04114 Oocyte meiosis 20 5.61E-08

hsa04914 Progesterone-mediated oocyte maturation 17 1.93E-07

hsa05200 Pathways in cancer 33 6.75E-07

hsa04115 p53 signaling pathway 13 1.07E-05

hsa04145 Phagosome 18 1.75E-05

hsa00071 Fatty acid metabolism 10 1.98E-05

hsa04060 Cytokine-cytokine receptor interaction 26 2.02E-05

hsa05020 Prion diseases 9 2.65E-05

hsa00230 Purine metabolism 19 2.73E-05

hsa00830 Retinol metabolism 11 8.59E-05

hsa04360 Axon guidance 16 9.27E-05

hsa00590 Arachidonic acid metabolism 10 1.20E-04

hsa05110 Vibrio cholerae infection 10 1.20E-04

hsa00240 Pyrimidine metabolism 13 1.45E-04
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Fig. 2 Protein-protein interaction analysis of the 20 most significantly DEGs: Red was up-regulated DEGs; Blue was down-regulated DEGs

Fig. 3 RT-PCR validation in HCC clinical samples for mRNA expression level of 10 most significantly dysregulated genes. NO2; control samples;
CO2; HCC samples. **; significant difference with P < 0.01
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genes were in accordance with the results of GO and
KEGG analysis. Three genes, including CCT3, NDC80, and
ASPM were proved to be highly connected in the PPI net-
work. CCT3, a subunit of CCT cluster, plays a role in
assisting the folding of proteins involved in important
biological processes. CCT3 was found to display a signifi-
cantly different gene expression level in HCC compared to
adjacent non-malignant liver tissues, arising from the
occurrence of the amplicon 1q21-q22 [27], which is
consistent with our result of RT-PCR validation. In
addition, other genes’ expression status detected by RT-
PCR was totally in accordance with the result of integrated
analysis, suggesting that the bioinformatics method of inte-
grated analysis was credible.
ASPM was highly expressed in fetal tissues but lowly in

most adult tissues. Our result and previous evidences [23]
found that ASPM and NEK2 mRNA was over-expressed
in HCC. Moreover, we found that ASPM, NEK and CCT3
over-expression present significant association with over-
all survival of HCC patients based on TCGA validation,
predicting enhanced invasive/metastatic potential of HCC
and higher risk of early tumor recurrence. ASPM, NEK
and CCT3 may be applied as potential prognostic
biomarkers for HCC. CAP2 overexpression was also
discovered in our study, and CAP2 has been suggested as
a candidate biomarker of HCC owing to elevated level in
the serum of HCC patients [28].
Among the 10 most significantly down-regulated

genes, DCN, an extracellular matrix proteoglycan, has
important biological functions in growth, development
and diseases. Loss of the decorin gene, which are known
to interfere with cellular events of tumorigenesis mainly

by blocking various receptor tyrosine kinases such as
EGFR, Met, IGF-IR, PDGFR and VEGFR2, is permissive
for tumorigenic growth of HCC with decreasing levels of
the cyclin-dependent kinase inhibitor p21WAF1/CIP1, sug-
gesting potential utilization of DCN as an antitumor
agent in HCC [29]. RND3 down-regulation in HCC pa-
tients has been reported by several studies [26, 30, 31],
and may be a metastasis suppressor gene in HCC.
However, the expression patterns of four genes among

the 20 most significant DEGs in the current study were
inconsistent with or ignored in the previous studies, in-
cluding TBCE, SPINT2, ECM1, and KZAN. The function
of KZAN was not identified, whereas the other three
genes were all comprehensively studied. In the current
study, the inconsistent results might inspire their roles
in the oncogenesis and development of HCC with some
novel views.
SPINT2 encodes a transmembrane protein with two

extracellular Kunitz domains that inhibits a variety of
serine proteases. The protein product of SPINT2 inhibits
HGF activator, which prevents the formation of active
hepatocyte growth factor, has been taken as a putative
tumor suppressor [32]. Previous studies mainly focus on
the methylation of SPINT2 in HCC instead of its expres-
sion [33, 34]. Nevertheless, we have found that the ex-
pression level of SPINT2 was significantly suppressed in
HCC expression profiles. The pattern was consistent
with that in cell renal cell carcinoma [32], which might
indicate its potential application as a novel HCC
suppressor.
ECM1 encodes a soluble protein that is involved in en-

dochondral bone formation, angiogenesis, and tumor

Fig. 4 TCGA database validation for mRNA expression level of 10 most significantly dysregulated genes
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Fig. 5 The association between gene expression level and HCC survival in TCGA database for 10 most significantly dysregulated genes
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biology. It interacts with a variety of extracellular and
structural proteins, contributing to the maintenance of
skin integrity and homeostasis [35]. The expression of
ECM1 is reported to be significantly up-regulated in
HCC patients [24], however, the current analyses of ex-
pression profiles showed that expression of ECM1 was
suppressed in HCC patients and were confirmed using
RT-PCR. The discrepancy revealed the complicated
functions of ECM1 in the oncogenesis and development
of HCC.

Conclusions
In short, the current study gave an explicit elucidation
of dysregulated genes in HCC by the integrated analysis
of microarray datasets in GEO database, the biological
function of these genes was significantly enriched in cell
cycle. The results of RT-PCR and TCGA validation were
consistent with that of integrated analysis, indicating the
high credibility of this integrated analysis method. In
addition, our study showed that some genes could be
potentially valuable in the clinical diagnosis (such as
ASPM, NEK2 and CCT3) and anticancer therapy (such
as DCN, RND3) for HCC. Our study improved the un-
derstanding of the transcriptome status of HCC, and
might shed a light on the further investigation on the
mechanisms of HCC.

Additional file

Additional file 1: Table S1. Detail information of primers. Table S2.
Information of the most significantly up-regulated or down-regulated
DEGs in HCC. Table S3. The expression values of 10 genes on all 5 HCC
cases. (DOC 89 kb)
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