Skip to main content
Fig. 1 | Diagnostic Pathology

Fig. 1

From: Microfluidics-based immunofluorescence for fast staining of ALK in lung adenocarcinoma

Fig. 1

Working principle of the microfluidic tissue processor (MTP) and detailed time protocols. a-b The MTP device is based on a pressure-driven system, which controls the delivery of the reagents from reservoirs of either 1.5 or 50 mL. Reagents are driven to the tissue slide by passing through the reagent delivery chip (RDC) and the microfluidic tissue processor chip (MTP). The MTP chip is placed on top of the tissue section, resulting in the formation of a thin closed reaction chamber. This allows for confined epitope-antibody interaction. The exchange of reagents is done in a timeframe of 1 s, following the principle of the fast-fluidic exchange technology (FFEX). Thereafter, reagents are delivered into the waste. The clamping of the slide and the protocols details are defined via a user interface connected to the system. c The tissue slide pre-processing was performed manually (OFF chip) and included (i) dewaxing for 10 min at 65 °C followed by 10 min incubation with dewaxing solution, (ii) rehydration with decreasing concentrations of ethanol down to tap water, (iii) heat-induced antigen retrieval with TRIS/EDTA pH 9 at 95 °C for 30 min and (iv) cool-down for 20 min. The direct ALK IF staining was performed on the microfluidic device (ON chip) by using the primary antibody mouse anti-human ALK (Novocastra, clone 5A4) and a fluorescently-labelled secondary anti-mouse IgG antibody (Alexa Fluor 647). The blocking solution was 2.5% horse serum. DAPI was included in the mounting solution for counterstaining

Back to article page