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Abstract

The distribution of diagnosis-associated information in histological slides is often spatial dependent. A reliable
selection of the slide areas containing the most significant information to deriving the associated diagnosis is a
major task in virtual microscopy. Three different algorithms can be used to select the appropriate fields of view:

1) Object dependent segmentation combined with graph theory; 2) time series associated texture analysis; and

3) geometrical statistics based upon geometrical primitives. These methods can be applied by sliding technique
(ie, field of view selection with fixed frames), and by cluster analysis. The implementation of these methods
requires a standardization of images in terms of vignette correction and gray value distribution as well as
determination of appropriate magnification (method 1 only). A principle component analysis of the color space
can significantly reduce the necessary computation time. Method 3 is based upon gray value dependent
segmentation followed by graph theory application using the construction of (associated) minimum spanning tree
and Voronoi's neighbourhood condition. The three methods have been applied on large sets of histological
images comprising different organs (colon, lung, pleura, stomach, thyroid) and different magnifications, The trials
resulted in a reproducible and correct selection of fields of view in all three methods. The different algorithms can
be combined to a basic technique of field of view selection, and a general theory of “image information” can be

derived. The advantages and constraints of the applied methods will be discussed.

Introduction

Virtual microscopy which is the work with virtual slides
can be performed in two different manners: 1) interac-
tive virtual microscopy and 2) automated virtual micro-
scopy [1,2]. Interactive virtual microscopy translates the
pathologist’s work with conventional glass slides into
the digital world, and leaves all work on the microscope
to the pathologist. It includes slide navigation, magnifi-
cation, illumination, focus, etc. Some digital features
might be added, especially the contemporary view of dif-
ferent slides, automated storage of areas of interest (with
inbuilt expert consultation), or creation of labels. Auto-
mated virtual microscopy tries to transfer as many func-
tions as possible to the computer with the final aim,
that the system evaluates and proposes the most likely
diagnoses [3-5]. Such a system must translate all items
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of the pathologist’s work into computerized algorithms.
These have not necessarily to work in a fully compatible
manner; however, they must contain modules that
reflect to the corresponding pathologist’s work [6,7].
These modules will probably work in a “time sequence
order”, and include in addition to statistical procedures
and classifiers tools that provide a reproducible and
constant image quality, object, structure, and texture
related magnifications, image analysis procedures, and
field of interest recognition programs.

We want to describe some basic ideas and information
recognition algorithms in image analysis that can be
used for field of view detection in virtual slides which is
the position and size of image compartments that posses
the strongest association with the underlying disease.

Basic assumptions
The pathologist’s work is the evaluation of a diagnosis
from a microscopic image, which is an image analysis
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algorithm in combination with external (clinical) data
[1,8,9]. The pathologist’s view focuses on specific biolo-
gical meaningful objects and their spatial arrangement
(structure) which include a) normal objects (cells, nuclei,
etc.), b) abnormal objects (cancer cells, etc.), c) external
objects (bacteria, parasites, silica, etc.), d) preserved
structure with abnormal cellular societies (inflammatory
infiltrates, fibrosis, etc.), e) destroyed structure (granu-
loma, necrosis, etc.), and f) abnormal structures (adeno-
carcinoma, sarcomatous growth pattern) [10-13].
A diagnosis from a histological image can be evaluated
by recognition and classification of the objects, the
formed structures, and their spatial arrangement. It is
useful to introduce different levels of structures in order
to describe for example the infiltration of lymphocytes
into a vascular wall (a vessel would be of higher order
compared to a lymphocyte because a vessel is built by a
cellular sociology including endothelial cells, smooth
muscle cells, a basal membrane, etc.). The details of this
concept have been described in Kayser et al. [10,14-16].

The term information is derived from the latin word
informare which means “create by teaching”, in other
words a communication procedure between a source
(image) and the (understanding) receiver (pathologist).
Shannon has analyzed the specific conditions of infor-
mation transfer and content [17,18]. According to his
theory information limits the broad variety of reactions
of an (understanding) receiver to only one or a few
appropriate ones. In other words, information is a statis-
tical property and can be analyzed by statistical meth-
ods. Shannon introduced the term entropy as principle
measure of information, which is derived from classic
thermodynamics [17,18]. Entropy is a measure of the
distance of a statistical population from its end stage
using Kolmogorov’s axiomatic approach of non-overlap-
ping elementary events that are characterized by a prob-
ability 0 < p < 1.

Entropies (E = X{pi * In(pi)}) of different systems can
be simply added (Es = X(Ei), if there exists no correla-
tion between the elements of the different systems (so
called strong chaos), otherwise the more general term of
Tsallis entropy has to be used (Es = X(Eql+Eq2) + (1-q)
“Eq(1)*Eq(2)) [19-21].

Macro- and microstages

The basic elements of a system characterized by pi
might be equally distributed in the system’s space, or
agglutinate to certain formations which can be consid-
ered as a “subspace”. They are called macrostages. One
can define the macrostages as new (higher order) events,
and calculate the entropy of the original system based
upon the macrostages and their internal entropy [22,23].
The number of microstages gives the maximum number
of potential macrostages. An illustrating example is
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shown in figure 1 which is described in detail in [22].
The letter {T,H,LS} are the microstages, and the words
{THIS, IS, ISIS} form the macrostages. The sequence of
the macrostages form the structure.

The calculated Shannon entropies of the macrostages
within the system (This is Isis) result in:

This : [-0.92]; is: [-0.46]; Isis: [- 0.64]; ¥ = - 2.02

that of the total system without macrostages {this is
Isis} = -1.58,

and based upon the marcostages alone {[this] [is]
[Isis]} = -1.08

The calculated probability of the macrostages based
upon their internal entropies results in:

P(this) = (1.92)/5.02 = 0.38

P(is) = (1.46)/5.02 = 0.29

P(isis)= (1.64)/5.02 = 0.33

This is Isis: E = {0.38*In 0.38 + 0.29%*In 0.29 + 0.33 * In
0.33 = - 1.09

The differences between the macrostages are: [-0.46] +
[+0.22] = - 0.18.

If we transform the sequence into the question:

Is this Isis? we will get: [+0.46] + [-0.28] = + 0.18.

The calculation of the total entropy of the (macro-
stage) system depends upon its structure, or, in other
words, the calculation of macrostage entropies can be
applied in relation to internal structures, such as
sequential arrangement or spatial relationships
[16,22,23].

Entropy calculation in relation to histological images
(virtual slides)

The information of a histological image which a pathol-
ogist can derive depends on the presence and spatial
arrangement of cells or nuclei respectively. The different
cell types that are present in such a slide can be
addressed to microstages, and the corresponding disease
to macrostages respectively. The microscopic images,
the associated diagnoses, and the analyzed microstages
are shown in the figure 2 — figures 4. All in all 15 differ-
ent cell types, and 8 different diseases are taken into
account (figure 5). The assumed cellular distributions
are given in figure 6, and the computed entropies are
shown in figure 7. As expected, notable differences exist
between the different images (diseases). They are, how-
ever, not striking between quite different diseases, for
example between a small cell lung cancer and normal
lung parenchyma. The computed entropies can
obviously not directly be translated to the biological sig-
nificance of the corresponding disease.

How to refine the entropy approach?

Definition of image associated macro- and microstages
All (interactive) diagnostic information of a digitized
image is derived from biological meaningful objects
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Example of entropy, microstages,
macrostages and order

Consider the sentence: This is Isis.
Number of microstages: 4 (different letters)
Number of macrostages: 3 (different words)
Expression of macrostages {T,H,1,S}:
—{1,1,1,1} > This
—{0,0,1,1} > is
—{0,0,2,2} -> Isis.
— Shannon’s entropy:
S = - {0.1*In{0.1)+0.4"In(0.4)}*2 =1.58
— Total number of possible microstages: 44= 256
— Total number of possible macrostages:
{(4+4-1)}
{(4-1) } =52.

Figure 1 Calculation of entropy, micro and macrostages of the sentence /This is Isis/.

Measure: Entropy E = K*2{pi * In
pi) with [Xpiy=1]

Pi is the probability of a {micro)
event to be seen in the stage 7
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Figure 2 Example of cell types in histological images of colon diseases (normal, adenoma, and carcinoma) used for entropy calculation
(Shannon and Tsallis).
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Classification of images (macrostages)

Normal
{4 Cell types)

{7 Cell types)

Bronchopneumonia
(8 Cell types)

Bronchitis

{6 Cell types)

Figure 3 Example of cell types in histological images of lung diseases (normal, congenital adenomatoid malformation (CAM),

bronchopneumonia, and bronchitis) used for entropy calculation (Shannon and Tsallis).
. J

Classification of images (macrostages)

AAH
{6 Cell types)

SCC

{8 Cell types)

Large cell
{6 Cell types)

Figure 4 Example of cell types in histological images of lung diseases (atypical adenomatoid hyperplasia (AAH), small cell anaplystic carcinoma

(SCC), Adenocarcinoma (Adenoca), and large cell anaplastic carcinoma (Large cell) used for entropy calculation (Shannon and Tsallis).
. J
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Diagnosis

macrostages
Diagnosis Analyzed cell types
Nomal Lung {A1, A2 E, Hi}
Congenital adenomatoid malformation {C1, C2, E, Hi, Ly, Pi, Eo}
Bronchopneumonia {A1, A2, E, Hi, Ly, P1, Gr, Eo}
Bronchitis {Hi, Ly, P1, Gr, Eo, 5Q}
Adenomatoid atypical hyperplasia {E, Hi, Ly, P1, Eo, AH}
Adeno carcinoma {A1, A2, E, Hi, Ly, P, Eo, AC}
Large cell carcinoma {A1, A2, E, Hi, Ly, LC}
Small cell carcinoma {E, Ly, A1, Gr, SC}

Figure 5 Used cell types for entropy calculation in relationship to the diagnosis (macrostage).
A

Example of entropy, microstages,

macrostages, diagnosis

Microstages {15): Pneumocytes (A1, A2), endothelial cells

{E), histiocytes {Hi}, lymphocytes {Ly)}, plasma cells {Pl}),
granulocytes {Gr), eosinophils {Eo), CAM1 cells {C1, C2),

squamous metaplasia (SQ), atypical pneumaocytes (AH),
adenco carcinoma (AC), large cell carcinoma {LC), small
cell carcinoma cells {SC):

{A1, A2, E, Hi, Ly, Pi, Gr, Eo, C1,C2, SQAH,AC,LC, SC}
Normal {50, 05, 40, 05, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00, 00}
CAM {00, 00, 20, 05, 05, 05, 00, 05, 40, 20, 00, 00, 00, 00, 00}
Pneumonia {10, 01, 10, 05, 25, 09, 35, 05, 00, 00, 00, 00, 00, 00, 00}
Bronchittis {00, 00, 00, 10, 30, 05, 40, 05, 00, 00, 10, 00, 00, 00, 00}
AAH {00, 00, 30, 10, 10, 05, 00, 05, 00, 00, 00, 40, 00, 00, 00}
Adeno {10, 05, 10, 05, 10, 05, 00, 05, 00, 00, 00, 00, 50, 00, 00}
Large cell {10, 05, 20, 05, 05, 00, 00, 00, 00, 00, 00, 00, 00, 55, 00}
Small cell {00, 00, 10, 00, 10, 05, 05, 00, 00, 00, 00, 00, 00, 00, 70}

Figure 6 Explanation of used cell types and their assumed relative frequency in the macrostage.
A\
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Computed entropies

(Shannon, cellular interaction, Tsallis*)

Lung normal

CAM
Pneumonia
Bronchitis
AAH:
Adeno
Large cell
Small cell

Shannon

En=-1.012
En=-1.609
En=-1.737
En=-1488
En=-1638
En=-1.637
En=-1330
En=-1.099

Interaction
En=-1.15
En=-2199
En=-2.056
En=-2.266
En=-2322
En=-3.309
En=-2929
En=-1515

Colon normal
Colon Adenoma

En=-1.494
En=-1.579
Colon Carcinoma En=-1.094

*} q = 0.2 - 0.8 (between inflammatory cells, and atypical cells)

Figure 7 Computed entropies of the model. No direct association of amount of entropy and clinical behavior of the disease was obtained.

En=-1.872
En =-2402
En =-1.593

such as cells, nuclei, mitoses, vessels, etc. In other
words, an analysis of the image information results in a
meaning, which is a probability function of the (prede-
fined) diagnoses and the image information. The higher
the probability the more accurate is the diagnosis. The
advantage of such an algorithm is the “relatively” con-
stancy of objects (and derived information) compared to
the broad variations of images belonging to the same
diagnosis [3,8].

We can consider that image information is an entity
that is primarily separated from the set of diagnoses.
This theory induces that image information can be
described as a mapping of diagnoses M(D) on the image
pixels {p(x,y,g)} with

M({Di},P) -> p{px(xy,g)} with p{px(x,y,g)} = maximum

for the (evaluated) diagnosis D.

Using the entropy approach we create a n-dimen-
sional space of elementary image events and analyse
the distribution in the different diseases or macro-
stages. It would be of formal advantage, if we could
define certain elementary events that are independent
from the associated meaning, i.e. independent from
external knowledge. In fact, this is possible by applica-
tion of stochastic geometry which has been described
by Stoyan et al [24].

Naturally, one could use the pixels as elementary
events and associated spectral functions in order to cre-
ate the set of elementary events. However, this approach
would leave us again with the problem of handling
broad image variance and low probability levels.

The basic elements (or image primitives) can also be
calculated by introduction of a (spatial) relationship func-
tion. It is usually called neighbourhood condition, such as
Voronoi’s or O’Callaghan’s condition [25-27]. The sim-
plest case is a neighbourhood function f(x,y) with

F(0,1) = 1 iff g(x,y)>threshold, and g(x+1,y)>threshold,
or g(x,y+1)>threshold, i.e., two pixels are neighbors iff
both of them posses a gray value above a certain prede-
fined threshold (or within a predefined bandwidth of
gray values). Naturally, a negative definition can also be
applied (<threshold).

This definition allows us to define a set of primitive
elements, that form an object, i.e. an elementary element
of image information (object, structure, texture).

The different primitive elements include

Isolated points (i.e. pixels without neighbors)

Fibers (pixels possessing a “line” of neighboring pixels,
and different start and end pixel

Circles (pixels possessing a line of neighboring pixels,
and identical start and end pixel
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Plateaus (a set of pixels with a number of neighboring
pixels>2 and connected points or lines).

Any biological meaningful object can be broken down
to a set of these four primitives; for example a mem-
brane consists of a line or a circle, a nucleus of a circle
and at least one plateau, a non-completely segmented
nucleus of lines, points, and plateaus, etc. .

In potential clinical application, this approach has to
work with approximately 800 different macrostages
(lung diseases, derived from [28], and 10,000 different
features (see figure 8). To discriminate between different
macrostages with a significance of $>0.95 only 55 fea-
tures per macrostage out of 1,100 available features per
macrostage would be necessary.

Implementation

The selection of an appropriate threshold and/or band-
width of the gray values as well as the image size in pix-
els are parameters that influence directly the
implementation of this algorithm. Therefore, it has been
tested on automated selected areas of interest which
have been determined by analysis of texture and object
features, as described elsewhere. Within the selected
areas of interest the chosen threshold is of only limited
influence on the expression of the elementary primitives
in contrast to the whole image (see figure 9). Thus,
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working in correctly selected areas of interest a thresh-
old can be chosen within a broad range without falsify-
ing the results. On the other hand, the described
technique might be useful to check the correctness of
the selected field of view. An approach to finally classify
diseases by the described algorithm is in preparation.

Discussion

The development of reliable and practice oriented scan-
ners which scan whole glass slides has opened a new
door in diagnostic surgical pathology or tissue — based
diagnosis [1,3,5,6,29-31]. The mechanical and optical
problems are in so far solved as the new canner genera-
tion can be successfully implemented into the workflow
of routine diagnosis [9]. The next step waits for opening
new and attractive functions of these systems. These
will include the mandatory replacement and improve-
ment of classic microscope handling, the implementa-
tion of new viewing and measurement functions, as well
as the search for automated diagnosis systems. These
will probably start with the implementation of so-called
assistants that will guide the pathologist through all the
possible tools. As in all such trends, the final aim would
probably be an automated diagnosis system, which the
pathologist has to control, and which might at a very
later stage control itself.

« Number of features

Statistical considerations

« Number of potential morphology associated
lung diagnoses {(macrostages)

« Number of microstages (compartments &
interactions {(graph theory, 17t level):

— {{+,-)point, (+-fiber, (+,-Jring, (+,-)plateau}
— {interactions {distances, neighbors)}

* Features / macrostage
< Discrimination power (5 %) significance 55

The algorithm possesses sufficient
discriminate between all known lung diseases

Figure 8 Statistical considerations on macrostages. About 800 different lung diseases with characteristic morphology are known. Only 55 of
1,100 potential features would be needed to obtain a discrimination power p > 0.95.

800
72

10,000
1100

power to
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Compartments of objects

Frequency of primitives and chosen threshold
Selected fields of view are less dependent
F{com,thr) conftrol function for field of view

frame 2

whale image

frame 1 *

frame 3 frame 4

frame 2

framd' 1
. B
. a \ -

__LLIl_:-i_'..-L; SN B =~ - anaem =N |

number bagic elements

frame 3 frame 4
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Figure 9 The generation of image primitives depends upon the chosen threshold. It remains nearly constant in correctly hosen fields of view,
and can be a measure for information content in relation to the whole image.

In this article we describe only one of the possible
manners to build and to implement such a system. Other
algorithms have been successfully tested too [32-34]. The
main idea is that we try to separate different functions
that are used in the pathologist’s thinking and diagnos-
tics, and not to be confused with the contemporary appli-
cation of algorithms that are in principle separated.
When in the Middle Ages some genius persons tried to
directly copy the flight of birds, they failed because they
did not separate the upstream forces from the velocity
(forward) movement. The separation of both forces
induced the successful development of airplanes that
have thought to be never become reality in the past.

We have shown the reader an approach that in a simi-
lar manner separates the information given in an image,
and its evaluation and interpretation based upon known
classification of information (diseases) by a pathologist.
Having finally tested the approach, a more generalized
theory of performing information into knowledge and
competence in virtual microscopy is indicated.
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