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Background

Current diagnostic and prognostic approaches in oncol-
ogy use morphological and molecular techniques which
lead to patient personalized therapies. However, they are
still complex and hard to standardize. This is also true
for Chronic Lymphocytic Leukemia (CLL) that has been
chosen for the IHMO project [1,2]. Simplifying diagnos-
tic processes and making easier the standardization
would be highly suitable. In order to develop such a
simpler automated method, the IHMO project, funded
by the French National Research Agency, proposed to
develop a multimodal microscopy scanning platform that
includes in a single machine a Raman micro-spectrometer
(RMS) combined with a multispectral imager (MSI) [3,4].

RMS is a quick non-invasive and non-destructive tech-
nique for tissues and cells analysis [5]. It is very sensible
to molecular changes and it could be used as a powerful
diagnostic and prognostic tool when used in association
with multivariate statistical methods. It is particularly
useful for characterizing pathological tumors especially
at the cellular level [6,7]. Multispectral imaging in the
visible spectrum could confirm RMS classifications and
provide new morphometric findings [8].

CLL disease is characterized by the proliferation of lym-
phocytes (lymphocytosis). It is the most common leuke-
mia, preferentially affecting people aged over 50 years old.
It is incurable and in most cases shows no clinical signs.
Thus, it is often discovered by chance during a blood test.
If necessary, morphological and immunological studies are
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led by analyzing blood smears colored with May-Griin-
wald Giemsa, by making a complete blood count and by
computing a Matutes score. Such studies are necessary
because it is impossible to distinguish a healthy cell from a
cancerous one only using a conventional microscope.

Material and methods

Blood smears were prepared on classical glass slides com-
monly used in laboratories for microscopy; cells were loca-
lized by optical microscopy. A new multimodal machine
which has been developed combining i) a 10 bands multi-
spectral imager using the full spectrum of transmitted visi-
ble light ii) a Raman micro-spectrometer, equipped with a
532nm diode laser excitation source delivering 13.5mW of
power on the sample; iii) a microscope stand with 40x and
150x lenses suited with an xyz motorized stage for scan-
ning the blood smear, and localizing x-y coordinates of a
representative series (~100 for each patient) of lymphocyte
cells before registering Raman spectra on their nuclei and
their individual multi-spectral images. An additional piezo
actuator allowed for precise z stack recording. Figure 1
shows each step from the screening of the smears to the
final results.

Raman micro-spectroscopy

More precisely, 997 polymorphonuclears, 95 monocytes
and 1127 lymphocytes from 12 different blood samples
have been considered in the first part of this study, and a
Raman spectrum has been acquired on each of them. In
the second part, 4257 spectra have been registered on lym-
phocytes of 49 leukemic patients suffering from hyper leu-
kocytosis Chronic Lymphocytic Leukemia, and 2596
spectra have been recorded on lymphocytes of 27 healthy
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Figure 1 IHMO platform includes the Raman micro-spectrometer and
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the multi-spectral sources (hardware) and a software able to control the

individuals. These spectra have been then studied, using

around 90 cells per blood sample.

Raman data were first pretreated to erase contaminant
information into the spectra and then were analyzed
using a multivariate statistical method which put for-
ward the relevant information needed to distinguish in a
first time lymphocytes from polymorphonuclears. The
spectra are then reduced to their relevant information
and classified using a Support Vector Machine algo-
rithm [9]. Then this algorithm was used to develop a
classification model splitting leukemic and healthy

lymphocytes; 3 sets of data were created, the first one, the
training set, composed of the spectra from 6 leukemic
patients (513 spectra) and 4 healthy individuals (315 spec-
tra) which was used to create different prediction models,
the second set, the validation set, composed of spectra
from 33 leukemic patients (2820 spectra) and 13 healthy
individuals (1106 spectra) was used to select the best
model among all previously computed. Finally, the third
set, the test set, composed of spectra from 20 different
blood samples (2099 spectra) was used to validate the
selected classification model in a blind way.
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Figure 2 multi-spectral imaging feature extraction and classification method

Multi-spectral imaging

After acquisition of Raman spectra, the slides are stained
using a RAL_DIAGNOSTICS™ standardized staining pro-
tocol. Then, for each target cell, a multi-z/multi-spectral
image is acquired: a z-stack of 100 nm spaced of 24 mono-
chrome images for each of the ten wavelength bands. An
algorithm combining mathematical morphology techniques
and sparse regression was developed to produce a color
RGB image with an extended-depth-of-focus from the
multi-z/multispectral image. This color image is used to
visually confirm the classification of cells characterized by
RMS. The set of scalar images multi-Z/multi-spectral of
each cell is also processed by mathematical morphology

techniques to produce morpho-spectral texture descriptors
reducing the 240 images from each color band to a set of 4
representative images. Such data reduction process allowed
representing each cell by a 40x40 square symmetrical cor-
relation matrix. Then, using tools from information geo-
metry and multivariate statistics, cells are embedded into a
dimensionality reduced space used to produce an unsuper-
vised classification into two classes: leukemia patients vs.
healthy individuals.

Results and discussion
First stage molecular classification with Raman spectro-
metry aimed at identifying the nucleated components
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from a blood smear, mainly polymorphonuclears and
lymphocytes. Indeed such differentiation is straightfor-
ward with morphological methods like MSI even on
unstained samples. Molecular classification gave a sensi-
tivity of 99.3% and a specificity of 99.6%.

The second stage aimed at classifying spectra from leu-
kemic and healthy lymphocytes and provided a sensitivity
of 80% and a specificity of 100% on an extended set of
blind samples.

It has to be mentioned that in a first step of this work,
we tried to match the classification results to the percen-
tages obtained with flow cytometry in term of T, B and
NK lymphocytes of a blood sample. However, these results
could not be compared with each other since in this study
the information which is taken into account is obtained
from the nucleus of each white blood cell. As a result, this
is a molecular and nuclear information while, in classical
cytology, this is the membrane of the cells which is
considered.

Morpho-spectral texture classification from multispec-
tral imaging in the visible is used to complement and con-
solidate the RMS data classifications and in on-going work
will be used to identify specific morpho-spectral character-
istics associated to leukemic cells (see figure 2).

Conclusion

IHMO project has demonstrated the power of Raman
micro-spectroscopy coupled with supervised classification
algorithm such as Support Vector Machines for cell classi-
fication and more precisely for the diagnosis of CLL. Mor-
phological descriptors obtained from multi-Z and
multispectral images provide another independent classifi-
cation that still needs to be assessed.

The multimodal microscopy platform can be used more
generally in the field of cytohematology, however applica-
tion to cytological and histological pathology would need
further developments and could take profit from new
methods in data classification.
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