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Abstract

Background: Identification of bladder layers is a necessary prerequisite to bladder cancer diagnosis and prognosis.
We present a method of multi-class image segmentation, which recognizes urothelium, lamina propria, muscularis
propria, and muscularis mucosa layers as well as regions of red blood cells, cauterized tissue, and inflamed tissue
from images of hematoxylin and eosin stained slides of bladder biopsies.

Methods: Segmentation is carried out using a U-Net architecture. The number of layers was either, eight, ten, or
twelve and combined with a weight initializers of He uniform, He normal, Glorot uniform, and Glorot normal. The
most optimal of these parameters was found by through a seven-fold training, validation, and testing of a dataset
of 39 whole slide images of T1 bladder biopsies.

Results: The most optimal model was a twelve layer U-net using He normal initializer. Initial visual evaluation by an
experienced pathologist on an independent set of 15 slides segmented by our method yielded an average score of
8.93 ± 0.6 out of 10 for segmentation accuracy. It took only 23 min for the pathologist to review 15 slides (1.53 min/
slide) with the computer annotations. To assess the generalizability of the proposed model, we acquired an
additional independent set of 53 whole slide images and segmented them using our method. Visual examination
by a different experienced pathologist yielded an average score of 8.87 ± 0.63 out of 10 for segmentation accuracy.

Conclusions: Our preliminary findings suggest that predictions of our model can minimize the time needed by
pathologists to annotate slides. Moreover, the method has the potential to identify the bladder layers accurately.
Further development can assist the pathologist with the diagnosis of T1 bladder cancer.

Introduction
Bladder cancer remains a prevalent disease in the US. In
2020, an estimated 62,100 men and 19,300 women will
be diagnosed with the disease, and another 17,670 indi-
viduals are expected to die from it [1]. In particular, the
treatment of high-grade T1 bladder cancer, representing
30% of non-muscle invasive bladder cancer cases, con-
tinues to be a challenging clinical problem. The five-year
recurrence and progression rates of patients with the T1
disease are high at 42% and 20–40%, respectively [2].

Those with an increased depth of lamina propria inva-
sion or with extensive lamina propria invasion are more
than three times more likely to progress than patients
with “superficial” invasion and have more than twice the
risk of cancer-specific mortality [2, 3].
The treatment and decision-making processes are fur-

ther complicated by several factors. For individuals
staged with T1 or T2, there is a 40% risk of upstaging
and a 5-year cancer specific survival rate of 88 and 63%,
respectively [4, 5]. Further, the standard for high-risk T1
bladder cancer is radical surgery (cystectomy), and
though these patients have a 80–90% cancer-specific
survival at 5 years, 50–60% of patients have post-surgical
complications, and their risk of mortality is 2–3% in the
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first 90 days after surgery [6–8]. Additionally, recovery is
insubstantial with a known decline in health-related
quality of life primarily due to the need for urinary
diversion and the risks of sexual and bowel dysfunction
[9]. In summary, patients are at risk for upstaging of
non-muscle invasive bladder cancer, and thus are
unnecessarily treated with radical surgery and live with
its complications and quality of life decline. Conse-
quently, clinicians and patients struggle with the choice
of conservative bladder-preserving therapies versus rad-
ical cystectomy. Better tools are needed to risk stratify
patients and provide more personalized treatment
counseling.
We aim to develop an automated method to improve

the staging accuracy and risk stratification of T1 bladder
cancer. In [10, 11], a deep learning method was
developed to automatically recognize muscularis propria,
lamina propria, and urothelium from hematoxylin and
eosin (H&E) stained bladder biopsies. It utilized a fine-
tuned Inception v3 to classify patches of tissue into one
of these three classes. Patch-wise predictions were aggre-
gated into heatmaps and thresholded in order to achieve
a segmentation of bladder layers. The method had good
agreement with the pathologist but was limited due to
several factors. First, the segmentation methodology was
inefficient, as several hundred thousand overlapping tiles
needed to be classified in order to produce a segmenta-
tion map for each slide. Second, the network often iden-
tified inflammation as urothelium, red blood cells as
muscularis propria, and cautery artifacts for bladder
layers. And third, the dataset was limited to only a few
bladder biopsies, possibly lacking generalization. For
these reasons, we sought a fully convolutional, multi-
class semantic segmentation network on a larger dataset.
As a next step, we present a method to automatic-

ally identify anatomical structures from H&E-stained
slides of bladder biopsies. Interpreting bladder anat-
omy from tissue biopsies is a crucial the first step for
two reasons. First, clinicians need to identify anatomic
structures in bladder biopsies that confirm T1 disease.
Further, pathologists need to recognize the various
landmarks within the lamina propria and the presence
of tumor nuclei within the lamina propria in a precise
manner to differentiate Ta (non-invasive papillary
carcinoma) from T1 tumors. However, the prevailing
literature suggests that pathologists struggle to
consistently recognize lamina propria invasion from
H&E bladder biopsies, often due to limitations such
as anatomic variation, tissue size, fragmentation, and
processing artifacts [12–16]. Thus, the ability to
measure the depth of tumor invasion into bladder
wall layers must be enhanced in order to reliably
provide prognostic information that can guide treat-
ment options. Here, as a first step towards enhancing

the staging and risk stratification of T1 bladder can-
cer, we present an automated image analysis system
to recognize major anatomical structures (urothelium,
lamina propria, muscularis propria, and muscularis
mucosa) from images of H&E-stained slides of blad-
der biopsies in addition to regions of red blood cells,
cauterized, and inflamed tissues.

Materials and methods
Dataset
Our primary dataset consisted of 54 whole slide H&E
images of T1 bladder biopsies, collected with the ap-
proval by the Ohio State University Institutional Review
Board. All slides were anonymized and digitized at 40x
magnification using a high-resolution scanner (Aperio
ScanScope, Leica Biosystems) at 0.2437 μm per pixel.
The dataset was randomly divided into two subsets – S1
(39 whole slide images) and S2 (15 whole slide images)
datasets. Regions of each slide in S1 were annotated by
an in-house pathologist, including urothelium (mucosa),
lamina propria, muscularis propria, red blood cells
(RBCs), cauterized tissue, inflammation, and muscularis
mucosa. S2 was utilized as an independent test set; for
this reason, none of the slides in S2 were annotated by
the in-house pathologist.
While each slide in S1 was annotated, most tissue was

unlabeled (unannotated) due to the tedious and time
consuming nature of annotating a whole slide image. To
prevent confusion during training, unlabeled regions of
tissue were edited to look like background, i.e. they were
removed from training. This way, the model only
learned from labeled regions. Figure 1 visualizes back-
ground conversion of unlabeled regions.
S1 was then divided into training (31 slides), valid-

ation (4 slides), and testing (4 slides) sets randomly.
Each slide was divided into 512 × 512 tiles with no
overlap, paired with their annotations as the ground
truth maps. In order to improve learning, tiles that
contained more than 80% background, as well as tiles
with no labelled data were labeled as background. As
a result, S1 produced 13,335 pairs of images and
ground truth masks. The number of tiles in each set
was selected specifically to maintain an approximately
80:10:10 ratio between the training, validation, and
testing sets, respectively.
Our secondary dataset consisted of 53 whole slide

H&E images of T1 bladder biopsies. The image acqui-
sition parameters for this dataset were the same as
our primary dataset but were acquired at different
point in time and thus serve as an additional inde-
pendent testing dataset (similar to S2). None of the
images in our secondary dataset were pre-annotated
by the pathologist.
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U-net
U-Net is a convolution neural network (CNN) based
semantic segmentation framework [17]. It consists of
two parts. The first part, known as the contraction
path, follows the architecture of a traditional CNN
[16]. It consists of convolutional layers, each of which
generates a certain number of filters, convolves them
over an input image tile, and returns several feature
maps. These feature maps are fed into a max pooling
layer, which reduces the dimensionality of the feature
maps by half. This process is repeated for each con-
volutional and pooling layer in the network. Overall,
the contraction path serves to derive the context of
an image.
The second part of U-Net is the expansion path. It

consists of the same number of layers as the contrac-
tion path, but in place of a pooling layer, it uses an
upscaling layer. Each layer takes the output of the
previous layer, feeds it through a convolutional layer,
and then upscales the result by a factor of two. This
upscaled value is then concatenated with the feature
map generated by the corresponding encoding layer
prior to its pooling step. The final layer convolves a
number of filters equivalent to the number of classes
to classify, outputting a feature map containing a
probability for each class. The result keeps track of
the model’s confidence of classification for each pixel
from the input.

Modified U-net
Our modified U-Net was implemented in Python and
Keras with a Tensorflow backend. As Fig. 2 illustrates,
its structure and organization are similar to the original
U-Net implementation, encoding layers consist of two
successive convolution and activation operations. Add-
itionally, there are 64 filters in the first encoding, in-
creasing by a power of two for each subsequent
encoding layer. Unlike the original implementation, each
encoding layer is first followed by random dropout to
prevent overfitting. The first, second, a third encoding
layers utilize a dropout of 20%, while the fourth and fifth
encoding layers utilize 50%. The last five layers that
make up the expansion path follow the original U-Net
architecture. Categorical cross-entropy was utilized for
loss due to the multi-class nature of our problem space,
and Adam [18] was utilized as the optimizer. A model
with eight, ten, and twelve layers were trained, tested,
and validated with varying initializers (see Experimental
Setup). These different configurations were tested in
order to determine an appropriate receptive field (i.e.
how much the context each set of feature maps see).

Experimental setup
One important factor that determines the effectiveness
of a deep learning model is how the layers are initialized
[19]. An initializer defines how the initial random
weights of a convolutional layer are set. Four different

Fig. 1 Ground truth preparation. a) Original image b) Ground truth prepared by the pathologist. Green, yellow, and red represent areas that were
annotated by the pathologist as urothelium, lamina propria, and red blood cells. White corresponds to the unstained region while black
correspond to the unlabeled region. c) We replaced the unlabeled region in (b) with background for computational ease. d) The image after
post-processing that was used during training
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initializers were tested: He Normal, He Uniform, Glorot
Normal, and Glorot Uniform [20]. Each method is
similar but differ in two ways. The He Normal initiali-
zers samples a truncated normal distribution centered
on 0, while the Uniform initializers use a uniform distri-
bution within the bounds [−limit, limit]. The equation
for the standard deviation of the normal distribution for

the He initializer is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q

, while for Glorot

it is
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, respectively.

The two experimental factors influencing the perform-
ance of our model were the initializers used in its convo-
lutional layers as well as the total number of layers in
the model. To select an appropriate model for our data,
we tested four initializers (He Normal, He Uniform,
Glorot Normal, Glorot Uniform) and three U-Net

architectures comprising of eight, ten and twelve layers
along with different amount of dropout.
An initializer that performs well with a U-Net with a

fewer layers is not guaranteed to perform similarly in a
U-Net with more layers. In order to determine the best
combination of initializers and layers, each architecture
was combined with each initializer and trained for 50
epochs on 31 training slides from S1. Generated predic-
tions were compared pixel-by-pixel with ground truth
masks to determine each model’s accuracy for each class.
The best performing models were then tested on the val-
idation and test dataset on S1. Moreover, the best per-
forming models were used to automatically annotate 15
whole slide images in S2 dataset. These images were
visually evaluated on a scale of 1–10 with an increment
of 1 by a senior pathologist to determine our model’s ac-
curacy in a clinical setting.
Table 1 shows the distribution of dataset S1 in each of

the seven classes during training (Table 1a), validation
(Table 1b), and testing (Table 1c). While there are rela-
tively high number of tiles to properly train, validate and

Table 1 The number of tiles in the training, validation, and test slides. Each tile is of size 512 × 512 pixels

Lamina Propria Muscularis Propria Mucosa RBC Cautery Inflammation Muscularis Mucosa

Training set
(31 slides)

5076 3702 3474 389 444 507 14

Validation set
(4 slides)

206 625 130 93 236 54 16

Testing set
(4 slides)

461 153 371 49 159 166 0

Fig. 2 Modified U-Net architecture with 12 layers. Numbers on the top of blocks represent the number of feature maps, while numbers on the
slide of blocks represent the feature map size
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test lamina propria, muscularis propria and mucosa
layers, there are only a limited number of RBC, cautery,
inflammation, and muscularis mucosa tiles versus other
categories. The differences in percentages of tiles in
training, validation and test are due to different compos-
ition of the selected slides. Figure 3 depicts the relative
percentage of each tile in each set.

Results and discussion
Due to space constraints, only the result of the best per-
forming models is reported, i.e., He Normal with eight
and twelve layers. An additional spreadsheet with com-
prehensive results for each initializer and U-Net config-
uration combination can be found in [Additional file 1].
Table 2 reports the results of using eight layered archi-
tecture initialized with He Normal on the validation and
test sets in S1. It is clear that the model performed well
in identifying the three bladder layers and background.
However, it struggled to correctly classify pixels in cau-
terized and inflamed tissue. We attribute this deficit to
the observation that these classes contained the smallest
number of training samples. Although it seems the

model did well to classify muscularis mucosa, there were
few training and validation/testing samples. Thus, this
needs to be validated on a dataset with large amount of
muscularis mucosa.
Table 3 reports the results on validation and test sets

from S1. As in the result presented in Table 2, the model
worked decently in identifying the three bladder layers.
However, it struggled to identify cauterized and inflamed
tissue, again due to limited training samples in our
dataset.
Overall, key bladder layers (mucosa, lamina propria,

and muscularis propria) are identified with high accur-
acy across several experimental setups. These numerical
results provide substantial evidence that the proposed
methodology performs well for accurate multi-class seg-
mentation. Further, the configurations reported in Ta-
bles 2 and 3 performed considerably better than other
configurations [Additional file 1], providing quantitative
evidence for the eminence of these particular
configurations.
Figure 4 illustrates a sample of the predictions

made by the models trained on each initializer using

Table 2 Results (pixel level accuracy) on 8 layered U-Net architecture initialized using He Normal. a) Results on the validation slides
in dataset S1. b) Results on the test slides in dataset S1

a b

Accuracy True Positive False Negative Accuracy True Positive False Negative

Background 0.99 94,424,339 54,224 0.99 119,213,206 48,864

Lamina Propria 0.99 28,939,686 177,916 0.97 52,727,211 1,696,663

Muscularis Propria 0.88 110,788,573 14,326,899 0.90 22,782,045 2,649,277

Mucosa 0.87 11,433,732 1,750,370 0.90 37,076,397 4,034,633

RBC 0.92 9,996,911 848,300 0.93 1,884,697 146,841

Cautery 0.62 6,424,900 3,927,745 0.28 6,701,447 16,835,934

Inflammation 0.94 41,268,732 2,686,066 0.52 9,082,821 8,235,484

Muscularis Mucosa 0.89 1,511,039 169,144 N/A N/A N/A

Fig. 3 Percentage in tiles in each set
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a 12 layer U-net. The trend that can be seen here,
and that is also reflected across all predictions made
by these models, is that the Glorot initialized models
tend to be more liberal with the boundaries of blad-
der regions, while He initialized models are more
conservative. Qualitatively, He Normal seemed to be
the best initializer. Based on these results, we deter-
mined that He Normal was the best initializer. A 7-
fold cross validation was performed using a 12 layer

U-net architecture to test the generalizability of our
modified U-net model (Table 4).
The 15 whole slide images in S2 were segmented with

our best performing model and visually evaluated by an
experienced pathologist on a scale of 1 to 10 with a step
of 1. Each slide in S2 contained from 1 to 3 tissue sec-
tions. The pathologist gave a score of 8.9 ± 0.6 for seg-
mentation accuracy. Furthermore, it only took 23 min
for the pathologist to assess 15 slides. This is far less

Fig. 4 Prediction Results. Leftmost column is the input image, middle column is the ground truth, and rightmost is the prediction. The rows in
descending order are: Glorot Normal, Glorot Uniform, He Normal, and He Uniform. The color purple is mucosa, light blue is lamina propria, dark
blue is unlabeled, and gray is background

Table 3 Results (pixel level accuracy) on 12 layered U-Net architecture initialized using He Normal. a) Results on the validation slides
in dataset S1. b) Results on the test slides in dataset S1

a b

Accuracy True Positive False Negative Accuracy True Positive False Negative

Background 0.99 91,488,149 672,063 0.99 119,216,562 45,508

Lamina Propria 0.99 27,861,365 278,336 0.98 53,285,338 1,138,536

Muscularis Propria 0.87 105,691,097 15,302,863 0.88 22,362,961 3,068,361

Mucosa 0.90 11,391,120 1,289,356 0.97 39,830,580 1,280,450

RBC 0.99 10,701,972 143,239 0.93 1,896,309 135,229

Cautery 0.64 6,612,587 3,740,058 0.41 9,610,122 13,927,259

Inflammation 0.97 41,619,905 1,393,986 0.41 7,082,849 10,235,456

Muscularis Mucosa 0.84 1,371,094 258,490 N/A N/A N/A
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time than would elapse if a pathologist were to prepare a
ground truth from scratch.
As the segmentation results on S2 were evaluated by

the pathologist who originally annotated the images in
S1, there is the possibility of an element of “evaluation
bias.” To circumvent this issue and to support the
generalization of our proposed model to pathologists
with difference in training and experience, we asked a
pathologist from another institution to evaluate our seg-
mentation results on the secondary dataset. All of the
images in the secondary dataset were pre-annotated by
the method. The pathologist gave a score of 8.9 ± 0.6 for
segmentation accuracy. This shows that the segmenta-
tion results of the proposed method are acceptable
across different institutions. Additionally, the narrow
range of error indicates that there is little clinical vari-
ance in our segmentation results. However, as the pa-
thologists were reviewing slides that were already
annotated by the method, there still exists an element of
bias (i.e. the model biases the pathologists).
The pathologist noted that in some instances, the pro-

posed method failed to recognize grandular cells within
epithelium. They also noted that the method struggled
to identify sclerotic stroma and vessels present within
smooth muscles. In lamina propria, the method strug-
gled whenever it encountered necrotic regions. Unfortu-
nately, only a few images in the training dataset contain
examples of these misclassified regions. However, we ex-
pect that more thorough annotations on a relatively lar-
ger dataset with help us overcome these limitations.

Conclusions
We present a modified U-Net based multi-class segmen-
tation method to identify different anatomical regions in
T1 bladder cancer biopsies. From a technical point of
view, we modified the U-Net base model by adding some
additional convolutional layers to the network. We also
introduced dropout modules after certain layers in the
network to minimize the effect of overfitting. We also
compared the effect of using different initializers on a
multi-class segmentation problem. The method’s ability
to accurately segment bladder layers has the potential to
minimize the time needed by pathologists to review the
bladder slides.
From the results, we can conclude that the Glorot ini-

tialized models tend to be more liberal with the bounds
of their regions, while He initialized models are more
conservative. On an independent set of 15 slides (dataset

S2) that were pre-annotated by our model, it only took
23min for the pathologist to review 15 slides. Moreover,
the algorithm has the potential to identify the bladder
layers accurately and hence can assist the pathologist
with the diagnosis of T1 bladder cancer.
In the future, we intend to experiment with other se-

mantic segmentation networks as well as acquire a larger
set of images. For a problem as complex as our, U-net
(and other semantic segmentation networks) require
more examples of different tissue structures in order to
be able to generalize to unseen data. Once meaningful
segmentation between bladder layers is achieved, we will
develop a method to localize tumor cells in lamina pro-
pria, automatically measure their invasiveness into lam-
ina propria, and correlate invasion with clinical outcome
to ultimately substage T1 bladder cancer to improve
clinical decisions.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13000-020-01002-1.

Additional file 1.

Abbreviations
H&E: Hematoxylin and eosin; RBC: Red blood cell; CNN: Convolutional neural
network

Acknowledgements
Not applicable.

Authors’ contributions
MKKN contributed to formal analysis, methodology, validation, writing of the
original draft, editing and review of the manuscript, conceptualization, and
project administration. EY contributed to formal analysis, methodology,
software, validation, and writing of the original draft. TET contributed to
methodology, validation, formal analysis, data curation, software, and editing
and reviewing the manuscript. WL contributed to validation and editing and
review of the manuscript. CTL contributed to validation, data collection,
conceptualization, funding acquisition, and editing and reviewing the
manuscript. AP contributed to data curation, formal analysis, validation,
editing and reviewing of the manuscript, data collection, and
conceptualization. MG contributed to formal analysis, methodology,
validation, writing of the original draft, editing and review of the manuscript,
conceptualization, funding acquisition, and project administration. The
author(s) read and approved the final manuscript.

Funding
The project described was supported in part by The Ohio State University
Comprehensive Cancer Center Intramural Research Award Pelotonia. (PIs:
Gurcan, Lee), U24CA199374 (PIs: Gurcan, Madabushi, Martel), U01 CA220401
(PIs: Gurcan, Cooper, Flowers), from the National Cancer Institute, and UL1
TR001420 (PI: McClain) from National Center for Advancing Translational
Sciences. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Cancer Institute,

Table 4 7-fold cross validation of dataset S1 using He Normal initializer and a 12 layer U-net architecture. Expressed a mean
accuracy and standard deviation (std)

Background Lamina Propria Muscularis Propria Mucosa RBC Cautery Inflammation Muscularis Mucosa

99.95 ± 0.03 97.67 ± 0.72 97.53 ± 1.4 93.57 ± 2.7 84.61 ± 12.92 55.09 ± 9.94 75.69 ± 17.84 N/A

Niazi et al. Diagnostic Pathology           (2020) 15:87 Page 7 of 8

https://doi.org/10.1186/s13000-020-01002-1
https://doi.org/10.1186/s13000-020-01002-1


National Center for Advancing Translational Sciences or the National
Institutes of Health.

Availability of data and materials
The datasets generated during the current study are not publicly
available due to sheer file size but are available from the corresponding
author on reasonable request. Code is available at https://github.com/
cialab/Bladder_U-net .

Ethics approval and consent to participate
Our datasets of digitized whole slide H&E images of T1 bladder biopsies
were collected with the approval by the Ohio State University IRB.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Center for Biomedical Informatics, Wake Forest School of Medicine,
Winston-Salem, NC, USA. 2Department of Pathology, Wake Forest School of
Medicine, Winston-Salem, NC, USA. 3Department of Urology, The Ohio State
University, Columbus, OH, USA. 4Department of Pathology, The Ohio State
University, Columbus, OH, USA.

Received: 24 April 2020 Accepted: 12 July 2020

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;

70(1):7–30.
2. Martin-Doyle W, Leow JJ, Orsola A, Chang SL, Bellmunt J. Improving

selection criteria for early cystectomy in high-grade t1 bladder cancer: a
meta-analysis of 15,215 patients. J Clin Oncol. 2015;33(6):643–50.

3. van Rhijn BW, et al. A new and highly prognostic system to discern T1
bladder cancer substage. Eur Urol. 2012;61(2):378–84.

4. Bostrom PJ, et al. Staging and staging errors in bladder cancer. Eur Urol
Suppl. 2010;9(1):2–9.

5. Berdik C. Unlocking bladder cancer. Nature. 2017;551(7679):S34–5.
6. Shabsigh A, et al. Defining early morbidity of radical cystectomy for patients

with bladder cancer using a standardized reporting methodology. Eur Urol.
2009;55(1):164–76.

7. Veeratterapillay R, Heer R, Johnson MI, Persad R, Bach C. High-Risk Non-
Muscle-Invasive Bladder Cancer—Therapy Options During Intravesical BCG
Shortage. Curr Urol Rep. 2016;17(9):68.

8. Novara G, et al. Systematic Review and Cumulative Analysis of Perioperative
Outcomes and Complications After Robot-assisted Radical Cystectomy. Eur
Urol. 2015;67(3):376–401.

9. Mohamed NE, et al. Muscle invasive bladder cancer: examining survivor
burden and unmet needs. J Urol. 2014;191(1):48–53.

10. Niazi MKK, Tavolara T, Arole V, Parwani A, Lee C, Gurcan M. MP58-06
automated staging of t1 bladder cancer using digital pathologic h&e
images: a deep learning approach. J Urol. 2018;199{4S):e775.

11. Niazi MKK, Tavolara TE, Arole V, Parwani AV, Lee C, Gurcan MN. Automated
T1 bladder risk stratification based on depth of lamina propria invasion from
H and E tissue biopsies: a deep learning approach. In: Medical Imaging
2018: Digital Pathology, vol. 10581. Bellingham: International Society for
Optics and Photonics; 2018. p. 105810H..

12. Bellot J. Pathologists of the French Association of Urology Cancer
Committee: Lamina propria microinvasion of bladder tumors, incidence on
stage allocation (pTa vs pT 1): recommended approach. World J Urol. 1993;
11:161–4.

13. Abel P, Henderson D, Bennett M, Hall R, Williams G. Differing interpretations
by pathologists of the pT category and grade of transitional cell cancer of
the bladder. Br J Urol. 1988;62(4):339–42.

14. Cai T, et al. Can early single dose instillation of epirubicin improve bacillus
Calmette-Guerin efficacy in patients with nonmuscle invasive high risk
bladder cancer? Results from a prospective, randomized, double-blind
controlled study. J Urol. 2008;180(1):110–5.

15. Tosoni I, et al. Clinical significance of interobserver differences in the staging
and grading of superficial bladder cancer. BJU Int. 2000;85(1):48–53.

16. Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial
intelligence. Lancet Oncol. 2019;20(5):e253–61.

17. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on
Medical image computing and computer-assisted intervention: Springer;
2015. p. 234–41.

18. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv
preprint arXiv. 2014;1412:6980.

19. Iglovikov V, Shvets A. Ternausnet: U-net with vgg11 encoder pre-trained on
imagenet for image segmentation. arXiv preprint arXiv. 2018;1801:05746.

20. Hanin B, Rolnick D. How to start training: The effect of initialization and
architecture. Adv Neural Inf Proces Syst. 2018:571–81.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Niazi et al. Diagnostic Pathology           (2020) 15:87 Page 8 of 8

https://github.com/cialab/Bladder_U-net
https://github.com/cialab/Bladder_U-net

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Materials and methods
	Dataset
	U-net
	Modified U-net
	Experimental setup

	Results and discussion
	Conclusions
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

