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1960: Prewitt and Mendelsohn scanned images from 
blood smear and reported a method to convert optical 
data into optical density values [5–7].

1965: Computerized image analysis of microscopy 
images of cells and chromosomes by Judith Prewitt and 
Mortimer Mendelsohn [8].

1986: Term deep learning (DL) coined by Rina Dechter 
[9].

1988: Convolutional neural network (CNN) invented 
by Yann LeCun [10].

1990: Whole slide scanners introduced [11, 12].
1998: Tripath becomes the first company with an auto-

mated PAP smear screening product to receive FDA 
approval [13–15].

2003: Cytyc received FDA approval for their ThinPrep 
Imaging System [13–15].

2013: Development of photoacoustic microscopy imag-
ing technique [16].

Background
Milestones and landmark trials in computational 
pathology (Figure 1 and Figure 2)
Some important milestones in computational pathology 
are as follows:

1950: Alan Turing conceived the idea of using comput-
ers to mimic intelligent behavior and critical thinking [1].

1956: John McCarthy coined the term artificial intelli-
gence (AI) [2, 3].

1959: Arthur Samuel coined the term machine learning 
(ML) as “the ability to learn without being explicitly pro-
grammed” [4].
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Abstract
Digital pathology (DP) is being increasingly employed in cancer diagnostics, providing additional tools for 
faster, higher-quality, accurate diagnosis. The practice of diagnostic pathology has gone through a staggering 
transformation wherein new tools such as digital imaging, advanced artificial intelligence (AI) algorithms, 
and computer-aided diagnostic techniques are being used for assisting, augmenting and empowering the 
computational histopathology and AI-enabled diagnostics. This is paving the way for advancement in precision 
medicine in cancer. Automated whole slide imaging (WSI) scanners are now rendering diagnostic quality, high-
resolution images of entire glass slides and combining these images with innovative digital pathology tools is 
making it possible to integrate imaging into all aspects of pathology reporting including anatomical, clinical, 
and molecular pathology. The recent approvals of WSI scanners for primary diagnosis by the FDA as well as the 
approval of prostate AI algorithm has paved the way for starting to incorporate this exciting technology for use in 
primary diagnosis. AI tools can provide a unique platform for innovations and advances in anatomical and clinical 
pathology workflows. In this review, we describe the milestones and landmark trials in the use of AI in clinical 
pathology with emphasis on future directions.

Keywords Artificial intelligence, Pathology, Future, Algorithms

Artificial intelligence in diagnostic pathology
Saba Shafi1 and Anil V. Parwani1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13000-023-01375-z&domain=pdf&date_stamp=2023-9-29


Page 2 of 12Shafi and Parwani Diagnostic Pathology          (2023) 18:109 

2014: Ian Goodfellow introduced generative adversarial 
network [17].

2016: MUSE microscopy technique invented to enable 
high resolution imaging without tissue consumption [18].

2017: Philips receives approval for a digital pathology 
whole-slide scanning solution (IntelliSite) [19].

2018: FDA permits first medical device using AI to 
detect diabetic retinopathy in adults (IDx DR) [20].

2021: FDA authorizes the first AI-based software to 
detect prostate cancer (Paige Prostate) [21].

Role of AI in pathology: a brief overview
Machine learning (ML)-based approaches are based on 
the machine “learning” to make predictions based on 
the input data and algorithms and falls within the broad 
ambit of AI [22, 23]. Deep learning (DL) network consists 
of an input layer, multiple hidden layers, and an output 
layer, recapitulating the human neural architecture. The 
hidden layers can recreate newer visualizations of the 
image and with appropriate number of repeats which 
can identify representations allow for the differentia-
tion between interesting features [24, 25]. AI methods 
are increasingly being applied in pathology practice for a 
wide variety of image analysis and segmentation type of 
tasks [26, 27]. These include trivial tasks, such as object 
recognition of cells etc., as well as more complex actions 
such as using image pattern recognitions for predicting 
disease diagnosis, prognosis, and therapeutics [28–50]. 
The main underlying principle of these AI approaches 
is to extract image patches which can be used to provid-
ing training to algorithms [28–35]. AI has helped with 
creating morphometric analysis methods which can 

facilitate quantitative histomorphometry (QH) analysis 
approaches for detailed spatial interrogation (e.g., cap-
turing nuclear orientation, texture, shape, architecture) 
of the entire tumor histologic landscape from a stan-
dard hematoxylin and eosin (H&E) slide [51]. These AI 
applications primarily aim to automate tasks that are 
time-consuming for the pathologist, thereby aiding fast 
and reliable diagnoses by utilizing the time saved on 
high-level decision-making tasks [28, 29, 33–35, 52–56]. 
Thus, AI technology can be used to support the overall 
reporting system, speed up reporting time and measure 
morpho-biological features more objectively. AI-aided 
reporting of certain features or lesions will also enable 
pathologists to focus on challenging cases and meet the 
increasing workload demands. Implementation of such 
technology in the workflow of pathology service is not to 
replace the human resources including pathologists, and 
laboratory technicians, but to provide support for them, 
assist them and augment diagnostic and performance 
efficiency with better allocation of resources, increased 
cost-effectiveness of the service and more consistent 
pathology reviews (Figs. 1 and 2) [57].

Main text
Hand-crafted feature-based approaches
ML algorithms can be developed either using intrin-
sic domain knowledge of pathologists and oncologists 
(domain-inspired features) or without this inherent 
domain knowledge (domain-agnostic features). This pro-
cess is called feature engineering [33, 58, 59]. An exam-
ple of domain inspired feature is the co-occurring gland 
angularity feature presented by Lee et al. which involved 

Fig. 1 Milestones in digital and computational pathology with depiction of three “revolutions” in the field

 



Page 3 of 12Shafi and Parwani Diagnostic Pathology          (2023) 18:109 

computing the entropy of gland directions within local 
neighborhoods on tissue sections. Aggressive risk pros-
tate cancer had more chaotically arranged glands com-
pared to low to intermediate risk cancer. Consequently, 
the entropy associated with these “gland angularity fea-
tures” (GAF) was found to be higher in aggressive and 
lower in indolent disease [39].

Image characterization across several disease and tis-
sue types can be better depicted using domain-agnostic 
features. Examples include nuclear and gland shape and 
size, tissue texture and architecture. Automated Gleason 
grading of prostate pathology images has been arrived 
at using a series of wavelet and tissue texture features 
enabling machine-based separation of low and high 
Gleason grade prostate pathology images. Hence both 
domain-agnostic and domain-specific hand-crafted fea-
ture-based approaches have been used for the diagnosis, 
prognosis, grading, and prediction of response to therapy 
for various cancers such as breast, prostate and brain 
tumors [60].

Handcrafted and unsupervised features have sev-
eral advantages and limitations. Handcrafted features 
are more transparent and intuitive to the pathologist or 
oncologist. Domain-inspired features require a strong 
foundational knowledge of the pathological process and 
its manifestation within the tissue and thus are more 
challenging to develop. The unsupervised feature genera-
tion-based approach of deep learning strategies lacks fea-
ture interpretability though it can be applied quickly and 

seamlessly to any domain or problem [33, 40, 41, 51, 58, 
59, 61, 62] (Fig. 3).

Implementation of AI tools in clinical pathology practice
Applications of AI in diagnostics
Recently, promising strides in AI have opened new vis-
tas for significantly altering the way cancer is diagnosed 
and classified [63]. Several advances have been made in 
incorporating AI tools to the diagnostic workflow in 
pathology practice. AI approaches have been used in a 
variety of tasks such as object recognition, detection, and 
segmentation [28–38]. WSIs can be used to extract sev-
eral features using computer vision algorithms, thereby 
enabling diagnostic predictions [64–69]. Several AI tools 
are increasingly being used to provide information that 
is gleaned difficult for the pathologist to identify [66, 68, 
69]. Examples include accurate objective assessment of 
immunohistochemical biomarkers such as Ki67, PD-L1, 
quantification of cells, evaluation of spatial arrangement 
of cells, expression, density, and pattern of distribution 
[32, 70]. AI can also be used to detect isolated tumor 
cells in lymph nodes suspicious for metastatic carcinoma, 
increasing sensitivity of detection in a time-efficient man-
ner. Additionally, AI tools can help standardize scoring 
criteria in several tumors, such as Gleason score for pros-
tatic cancers or breast cancer grading, where the mor-
phological features are represented on a spectrum of a 
continuous biological process [26, 71, 72]. Another strik-
ing application of AI search tools is the content-based 
image retrieval (CBIR) which enables pathologists to 

Fig. 2 Schematic representation of the how artificial intelligence (AI) can be applied in the practice of pathology

 



Page 4 of 12Shafi and Parwani Diagnostic Pathology          (2023) 18:109 

search for images similar to the image-in-question from a 
repository of large histopathology database. This is espe-
cially important in guiding pathologists to diagnose rare 
and complex cases which they might occasionally come 
across in their clinical practice The images retrieved from 
the database reflect similarities in associated histopatho-
logical features rather than mere image similarity. Hence, 
CBIR makes it easier to render a correct diagnosis in a 
timely fashion for seemingly difficult cases [73, 74].

Diagnostic algorithms can be incorporated into digi-
tal pathology workflow as independent reporting algo-
rithms, as diagnosis-aided tools, and as automated 
quantifiers of specific features. Independent reporting 
algorithms can provide diagnosis and automated reports 
without any input from the pathologists. Screening algo-
rithms can identify normal tissue like colonic, gastric, 
breast etc. from biopsies. However, it is important to 
consider the wide varieties of normal tissue during the 
algorithm development pathway, to avoid missing rare 
microlesions (such as benign mimickers of cancer) or 
focal lesions which are rare variants of cancer. Diagno-
sis-aided tools include algorithms that assess one of the 
various histological features such as tumor grade, type, 
and extent. Accurate pathological diagnoses involve 
assessment and combination of multiple features by the 
trained human eye. The utility of these AI algorithms is 
determined by its ease of incorporation into the diagnos-
tic workflow and the added value it brings to the pathol-
ogists’ diagnoses. This can be assessed based on the 
features assessed and the time required to provide results 
as well as on its accuracy. As an example, breast cancer 

grading algorithms have the potential advantage of objec-
tivity, inter-reader reliability and prognostic clarity com-
pared to the inter-observer variability seen in clinical 
practice. Hence in this case, the added value of such an 
AI algorithm would be better reproducibility rather than 
efficiency [56, 72]. Therefore, it is essential to not merely 
use AI algorithms, but to use them intelligently [27]. 
For instance, for the detection of lymph node metasta-
ses, AI can have superior performance when serving as 
a pathologist assistive tool, underscoring the importance 
of the context of intended clinical use. Automated quan-
tification of immunohistochemical markers has gener-
ated considerable interest as increasing efforts are being 
made to not only provide an objective estimation of these 
markers but also give an estimate of their predictive and 
prognostic value. While the manual estimation of breast 
cancer receptors might take only a few minutes by an 
experienced pathologist, it can be made more efficient 
and reproducible by an automated method [72].

Many digital image analysis (DIA) platforms have been 
adopted to aid pathologist assessments especially for 
quantitative biomarker evaluations [75]. Amongst the 
first open-source tools for image analysis was ImageJ, 
developed in 1997 by the National Institute of Health 
(Bethesda, Maryland, USA). In 2006, CellProfiler soft-
ware was published which provided supervised machine 
learning-based classification to perform imaging-based 
diagnoses. Another accessible platform being increas-
ingly used for image analyses is QuPath, first published 
in 2017. The software functions to provide unsupervised 
machine learning-based cell detection and supervised 

Fig. 3 Depiction of artificial intelligence (AI) and machine learning approaches currently used by pathologists to analyze images from tumors
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classification of whole slide images, tumor identification 
and quantitative biomarker assessment. Ventana Com-
panion Algorithm image analysis software has received 
approval from CE and US IVD for Roche IHC assays 
in breast cancers for the assessment of breast biomark-
ers (ER, PR, HER2, Ki67 and p53). The Tissue Phenom-
ics software was created by AstraZenecain 2014 and 
applied to clinical programs in immune oncology for 
identifying biomarkers. HALO (Indica laboratories) 
has developed modules for quantitative immunofluo-
rescence analysis primarily for research purposes. Scor-
ing of Ki67, ER, PR, CD3/4/8/15/20 and TILs has been 
made possible using Cognition Master Professional Suite 
platform developed by VMscope. QuantCenter, a frame-
work for 3DHISTECH image analysis applications, pro-
vides modules for tissue classification, IHC quantification 
and molecular pathology. The rapid emergence of digital 
image analysis solutions and integrated platforms has 
resulted in the need for validation and standardization of 
these tools before they can be approved in the diagnostic 
setting [76–78].

A milestone study in computational pathology is The 
CAMYLEON16 challenge, the first major challenge on 
computer-aided diagnosis in histopathology using whole 
slide images. H&E images from sentinel lymph nodes of 
breast cancer patients were used with the aim of iden-
tifying metastasis. With no time constraint, DL algo-
rithms showed comparable performance to a pathologist 
in detection of micrometastasis. To simulate a clinical 
practice setting, time constraint was imposed, which 
demonstrated an outperformance by algorithm over 
manual evaluation by 11 pathologists [28]. Differentiation 
between benign and malignant tumors using a super-
vised ML model trained on whole slide images obtained 
by fine-needle biopsy has been made possible [79]. Veta 
et al. highlighted the prognostic value of features such 
as nuclear shape or texture in male breast tumors using 
tissue microarray (TMA) [80]. In their study, Lee et al. 
used WSIs from prostate cancers to describe gland angu-
larity feature (GAF) which was related to the degree of 
disarray of the glandular architecture. GAF demonstrated 
high association with advanced stage prostate cancers. 
Nuclear pleomorphism, orientation and architecture 
have been employed to develop hand-crafted features in 
the tumor and benign tumor-microenvironment. These 
features used in tandem with a ML model was designed 
to predict the chance of recurrence within the 5 years of 
post-operative period [39]. Similarly, variations in nuclear 
shape and texture were used in oral cavity squamous cell 
carcinomas to stratify patients into risk categories pre-
dictive of disease-free survival (DFS). It was further elu-
cidated that patients with estrogen receptor (ER)-positive 
breast cancer with short-term survival (< 10 years) could 
be distinguished from those with long-term survival (> 10 

years) based on a combination of nuclear shape and ori-
entation features [62].

Another key milestone in the field of DP/AI has been 
the PANDA challenge, the largest histopathology com-
petition thus far. Nearly 1,290 developers joined hands 
and used 10,616 digitized prostate biopsies for the 
development of AI algorithms for Gleason grading. The 
algorithms submitted were selected based on the level 
of accuracy achieved compared to pathologist on inde-
pendent cross-continental cohorts. In United States 
and European external validation sets, the algorithms 
achieved agreements of 0.862 (quadratically weighted 
κ, 95% confidence interval (CI), 0.840–0.884) and 0.868 
(95% CI, 0.835–0.900) with expert uropathologists. How-
ever, in order for these algorithms to be applied clinically, 
across different patient populations, laboratories, and 
reference standards, prospective clinical trials evaluating 
AI-based Gleason grading is warranted [81].

To date, the most widely used DL algorithms in pathol-
ogy applications is convolutional neural networks 
(CNNs). Defined as a type of deep, feedforward network, 
CNN consists of multiple sequential layers (convolu-
tional sheets) that can calculate an output from an input 
(such as an image), by hierarchically deconstructing the 
image into low-level cues. Aggregation of these low-level 
cues, such as edges, curves, or shapes results in the con-
struction of a high-order structure to identify features 
of interest [29, 30, 82–87]. Araujo et al. used CNN for 
the classification of WSI of breast cancers into benign, 
malignant, in-situ or invasive. CNN was also shown to 
have performance comparable to dermatopathologists 
in distinguishing benign lesions such as seborrheic kera-
tosis from keratinocyte carcinoma and benign nevi from 
malignant melanoma [83]. Tschandl et al. demonstrated 
that CNN had similar diagnostic accuracy as humans in 
correctly classifying pigmented skin lesions using digital 
dermatoscopic images. These findings, among others, 
have established the role of AI based methods in diagnos-
tic practice [88].

Predictive and prognostic applications of AI
AI can be used to predict prognosis and therapeutic 
responses based on histological features [89, 90]. Directly 
linking images with several features of tumor, surround-
ing microenvironment and genetic profiles with survival 
outcomes and treatment response for adjuvant/neoad-
juvant therapy could provide important information in 
a concise manner. Integrating myriad morphological 
features, such as tumor histological patterns and tumor 
microenvironment patterns into a single prognostic index 
can be difficult for humans [26, 91]. However, image-
based AI tools can provide a novel classification system 
depicting clinical outcome, probability of recurrence 
or metastases and therapeutic response by correlating 
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important histological features such as tumor morphol-
ogy, stromal architecture, nuclear texture, and lympho-
vascular invasion etc. Prediction of clinical outcome 
using graphical approaches for evaluation of architec-
tural organization and spatial configuration of different 
types of tissues has resulted in considerable interest [63]. 
Wang et al. trained a ML model using nuclear orienta-
tion, nuclear shape, texture, and tumor architecture to 
predict recurrence in early-stage non-small cell lung can-
cer (NSCLC) from HE stained TMA slides. Their model’s 
prediction was shown to be an independent prognostic 
factor resulting in 82% and 75% accuracy for prediction 
of recurrence in two validation cohorts [61] (Fig. 3).

The prognostic implications of AI based tools were 
also highlighted in 2018 by Saltz et al. who used a con-
volutional neural network (CNN) to augment pathologist 
feedback for the automatic detection of spatial organiza-
tion of tumor-infiltrating lymphocytes (TILs) in images 
from The Cancer Genome Atlas. Their findings revealed 
this feature to be prognostic of outcome in 13 cancer 
subtypes [92]. A similar study conducted by Yuan et al. 
described a model to analyze the spatial distribution of 
lymphocytes with respect to tumor cells on triple-nega-
tive breast cancer WSIs. Not only did they identify three 
different categories of lymphocytes, so did they find a 
direct correlation between late recurrence and the spatial 
distribution of immune cells in ER-positive breast can-
cers [93]. CNN has also applied to breast cancer TMAs 
for histological and molecular characterization. Auto-
mated detection of mitotic figures in breast cancer WSIs 
using CNN has revealed a significant difference between 
a high versus a low Oncotype DX-defined risk of disease 
recurrence [72]. Similar prognostication study in colorec-
tal cancers using CNN-based approaches was performed 
by Geessink et al. Employing pathologist-defined ‘stro-
mal hotspots,’ CNN enabled quantification of ‘tumor-
to-stroma’ was seen to be independently prognostic for 
disease free survival [94].

A seminal multi-institutional study published by Beck 
et al. used a staggering number of morphological and 
spatial features (6642) to train a prognostic model in 
breast cancers and demonstrated these features to be 
associated with overall survival (OS) [95]. A similar study 
in human papillomavirus-positive oropharyngeal can-
cers showed that combining nuclear features of the stro-
mal and the epithelial compartments enabled prediction 
of the likelihood of progression of these cancers [96]. A 
related study in prostate cancers indicated the need for 
population-specific features while designing models, as 
significant differences in nuclear features of the stromal 
compartment were noted between Caucasians and Afri-
can cohorts. The importance of such population-specific 
models was also highlighted by greater accuracy in cal-
culating recurrence in a validation cohort of African 

American population by using an algorithm trained in a 
cohort of similar racial demographics compared to that 
trained in a mixed population [97].

AI as predictor of molecular and genomic profile
Recent advancements entail using H&E images to predict 
genetic alterations by deep learning algorithms. AI tools 
can be used to derive information about tumor genet-
ics/genomic profiles from morphology and thus help in 
understanding underlying cancer biology [98]. Molecu-
lar-based testing for prognostic purposes that incorpo-
rates information from multiple parameters are already 
available, e.g., the mRNA-based oncotype test [91]. Scha-
umberg et al. devised a model to predict the speckle-type 
POZ protein (SPOP) mutation status in prostate can-
cers which showed an area under curve (AUC of 0.74 
and AUC of 0.86 in two independent cohorts. Similar 
attempts have been made to predict commonly mutated 
genes in other tumor types [99]. Coudray et al. were able 
to generate a CNN model that could predict mutations 
in KRAS, EGFR, TP53, FAT1, STK11 and SETBP1, with 
high accuracy (AUC between 0.733 and 0.856). Similar 
approaches have been used for obtaining information 
regarding microsatellite instability from H&E images in 
colorectal and gastric cancers [100]. One such study by 
Kather and colleagues used a deep learning approach 
for elucidating microsatellite instability in a total of 
1616 H&E images of both frozen and formalin fixed spec-
imens with high accuracy (AUCs between 0.69 and 0.84 
in five cohorts) [101].

While the identification of association between mor-
phological patterns and tumor genetics seems to be 
straightforward, integrating mega volumes of genomic 
data such as next-generation sequencing (NGS) can be 
challenging. Studies highlighting the impact of combin-
ing NGS data with other features are warranted before 
implementing such algorithms in clinical diagnostic prac-
tice. What further complicates the picture is the lack of 
in-depth knowledge about the interaction between imag-
ing and genomic features. Although integrating the imag-
ing and molecular features can provide a comprehensive 
view of individual tumors, however, development, train-
ing, and validation of models capable of tackling such 
sophisticated multidimensional data remains a challenge 
[57].

Utility of AI in research, training, and education
AI tools provides critical tools to enhance pathologists’ 
training, provide helpful annotations and other interac-
tive functions to create a dynamic teaching environment 
for trainees. This can help integrate a strong knowledge 
of morphology with the use of novel approaches and 
advanced technologies in enabling the practice of high-
quality personalized and precision medicine. Whole-slide 
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imaging is already used for teaching at conferences, vir-
tual workshops, presentations, and tumor boards [26, 
102]. The Ohio State University Wexner Medical Center 
has incorporated the use of a “digital cockpit” for fully 
digital sign-outs. Residents regularly preview digital 
slides using the Philips integrated management system 
(IMS). The annotation tools enable viewing, panning, 
and zooming enhanced digital slides, encircling regions 
of interest, including a single cell under question, thereby 
creating a more interactive learning interface. The clini-
cal and research registries, the organ-based databases, 
our exceptional laboratory information system (LIS, col-
loquially called “beaker”) as well as the synoptic report-
ing templates are excellent examples of bioinformatics 
driven tools used in the everyday practice of pathology. 
The university also leverages several of its add-on com-
ponents to enable integration of WSI into the LIS. This 
underscores the state-of-the-art incorporation of digital 

pathology tools in clinical workflow [103, 104]. The use 
of Visopharm AI tools enables swift detection of isolated 
tumor cell metastases in lymph nodes in difficult cases. 
Integrating such AI tools in the daily sign-out workflow 
can supplement key information for the trainees to come 
up with a list of differential diagnosis and potential aux-
iliary tests that can be subsequently ordered, thereby 
honing their diagnostic skills. It also provides relevant 
educational resources which can potentially improve 
resident training. Such educational models can be com-
plementary to the conventional educational processes 
provided by the pathologists and can be adopted by other 
institutions. Not only has it improved the in-house train-
ing and inter-subspecialty consults, so has it made it a lot 
easier to collaborate with other institutions and provide 
efficient consults and second opinions on challenging 
cases [26, 103, 104].

Role of AI in drug discovery and development
Immune checkpoint inhibitors (ICIs) have led to a para-
digm shift in treatment of various cancers over the past 
few years. However, many patients receiving ICIs do 
not respond to this therapy, and this has resulted in the 
potential need for combining AI with digital pathology 
to stratify patients based on likely therapeutic benefit 
[105]. A study on recurrence risk stratification of early-
stage non-small cell lung cancers (NSCLC) based on 
nuclear and perinuclear features (shape, orientation, and 
spatial arrangement) was conducted by Wang and col-
leagues. High-risk patients were potential candidates for 
adjuvant chemotherapy. AI tools, such as hand-crafted 
ML approaches, can also be used to predict therapeutic 
response to targeted agents, ICIs, and chemotherapeutic 
drugs. One such study by Wang et al. described the pre-
diction of response to anti programmed cell death 1 (PD-
1) antibody nivolumab in late-stage NSCLC using spatial 
orientation of nuclei and TILs [44, 61, 106].

Roadblocks and challenges preventing AI application
Ethical principles and AI
In 2016, Wilkinson et al. highlighted the need to improve 
the infrastructure supporting the reuse of scholarly data 
and came up with the FAIR guiding principle for scien-
tific data management and stewardship. Data should be 
easily accessible, operator-independent, and reusable to 
ensure stringent data management. This is essential for 
knowledge discovery and innovation, and ensures reus-
ability of data by the community after publication (Table 
1) [107].

Validation of algorithms and overfitting
AI algorithms need rigorous multi-institutional valida-
tion before they can be clinical implementation. This 
usually requires application of the algorithmic approach/

Table 1 An overview of the challenges and roadblocks 
encountered during various steps of using artificial intelligence 
(AI) tools in pathology workflow
Process involved in 
integration of AI tools in 
pathology

Challenges and roadblocks

Identification of needs • Incorrection assessment of end-user 
and demands
• Small market size of AI usage
• Lack of awareness of possibilities of use

Collaborative inter-disciplin-
ary efforts

• Lack of coordination between different 
players
• Discordance in goals of participants

Study concept, design • Scientific background/rationale
• Funding
• Ethical approval

Development of algorithmic 
models

• Pre-analytical and analytical factors
• Lack of objective ground truth

Optimization, validation, and 
standardization

• Lack of appropriate validation dataset
• Overfitting

Interpretability • Lack of interpretability and 
generalizability
• Black-box issue

Data curation • Difficulty in obtaining well-curated, 
annotated data

Regulation/approval • Lack of clear-cut regulatory guidelines
Installation • Pathologists’ resistance to changes in 

old workflow
• IT infrastructure investment and over-
head costs

Accreditation • No external quality assurance scheme
• Unestablished audit cycles

Reimbursement • Lack of dedicated procedure codes
Clinical adoption • Lack of FDA approval for use of AI

• Skepticism among pathologists and 
oncologists

Computation system and 
data storage

• Need for powerful, high specification 
hardware
• Cost-benefit ratio considerations
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model on a training/learning discovery set, followed 
by confirmation of results on validation set. Current AI 
algorithms are mainly established on small-scale data and 
images from single center, augmented by random rota-
tion and flipping, color jittering, and Gaussian blur. The 
training set should be well balanced in terms of equal 
representation from all categories of interest. Once the 
algorithm is trained after several iterations on the dis-
covery dataset, further optimization is performed on the 
validation dataset. This process can be quite laborious 
and challenging and acquisition of pertinent datasets/
cohorts might be cumbersome [91]. In a study performed 
by Zech et al. it was shown that a CNN algorithm for 
detection of pneumonia performed significantly poorer 
when it was trained using data from one institution and 
validated independently using data from two other insti-
tutions than when it was trained using data from all three 
institutions, thereby highlighting the need for robust 
validation of AI algorithms using multi-institutional data 
before clinical adoption [108]. ‘Overfitting” is when AI 
algorithms, trained on one dataset, have limited appli-
cability to other datasets [109]. It can be difficult to find 
well-curated, accurate WSI reference datasets across 
cancer subtypes with annotated cancerous regions for 
algorithmic standardization. Furthermore, differences in 
pre-analytical and analytical factors, such as slide prepa-
ration techniques, scanner models and digitization pro-
cesses, between different centers must be considered 
while using applying these AI tools. To ensure the gener-
alizability and robustness of the AI algorithms, stringent 
quality assurance and standardization needs to be done 
at regular intervals. This requires development of large 
databases and repositories of annotated WSIs validated, 
corrected, and updated by a team of expert pathologists 
(Table 1) [91, 110].

Interpretability and the ‘black box’ problem
The ‘black box’ problem is the inability of deep learn-
ing algorithms to demonstrate how they arrive at their 
conclusions [111, 112]. Despite obvious advantages of 
accuracy and efficiency, deep neural networks face sharp 
criticism due to lack of interpretability, which forms 
a huge roadblock in clinical adoption. Several studies 
aimed to overcome this skepticism used post hoc meth-
ods to comprehensively analyze the outputs of AI algo-
rithms. However, post hoc analyses of deep learning 
methods seem superfluous as additional models should 
not be required to explain how an AI model works. 
Due to their development in conjunction with domain 
experts, hand-crafted AI approaches offer an advan-
tage of better interpretability. To increase interpret-
ability, researchers have integrated DL algorithms and 
hand-crafted ML approaches to come up with ‘fusion’ 
approaches. Be as it may, engineering both these methods 

is challenging and time-consuming and requires both 
oncologists’ and pathologists’ inputs. One such ‘fusion’ 
method to predict disease recurrence was described by 
Wang et al. who used a DL approach for nuclear seg-
mentation in H&E images of NSCLC followed by appli-
cation of hand-crafted method based on nuclear shape 
and texture. Future strategies are warranted to increase 
the interpretability of AI algorithms before they can con-
fidently be used in the clinical setting [51, 111, 113].

Quality of data
For optimal performance of AI-based approaches, it is 
highly important that the input data be of optimal quality 
and quantity. The highest predictive accuracy is reached 
when the training data has optimal signal-to-noise ratio, 
is well-curated and comprehensive. The importance of 
high-quality data is highlighted in the work of Doyle et 
al. that used an AI tool for automatic detection of pros-
tate cancer in WSIs [110]. An increase in magnification 
resulted in a decrease in the overall performance of the 
model due to loss of granularity at increased resolution. 
Majority of existing slide scanners have a maximum 
capability to scan at ×40. While higher resolution images 
(>×20) can be scaled down to be used by an algorithm 
trained at a resolution of ×20, considerable loss of data 
fidelity can occur with the use of an AI approach devel-
oped at ×40 when the maximum scanning resolution 
available is ×20. Hence, ensuring data fidelity is of para-
mount importance in order to standardize the evaluation 
of the performance of AI algorithms [52, 110, 114].

Computational system, data storage and cost-benefit ratio
It is essential to have a powerful high specification hard-
ware for processing and analyzing images as well as 
ample scalable data storage for storing these large size 
files (about 1000 times the size of an X-ray). Buying cloud 
storage platforms might be costly as well as have chal-
lenges in in the massive bandwidth required to transmit 
gigapixel-sized WSI images into data clouds. Addition-
ally, cloud storage requires uninterrupted fast wi-fi com-
munication between end-users and the cloud. Universal 
adoption of 5G would improve speed and address some 
of these difficulties in the future [115]. The cost of pro-
curement, implementation, and operational costs of AI 
may be a limiting factor, especially for small laboratories. 
The high initial cost of the scanners and additional hid-
den costs of training of staff and pathologists, technical 
support, digital slide storage systems, and regulatory or 
licensing costs incurred may be prohibitive to the adop-
tion of AI in clinical practice [116]. Another cost con-
sideration is the robust IT support for telepathology. A 
study found the cost-benefit analysis at a large-volume 
academic center with slides in excess of 1.5  million to 
be projected $1.3  million savings over a 5-year period. 
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Before any meaningful inferences can be drawn, cost-
benefit studies need to be performed in low-resource 
settings and small pathology laboratories [117]. In stark 
contradistinction to radiology, where digital systems 
obviate the need of making films, WSI in pathology does 
not reduce the laboratory’s workload since glass slides 
still need to be prepared to be scanned, thereby raising 
concerns about the justification for this additional step 
[118].

Technological issues
Scanning the entire slide is a laborious and time-con-
suming process with variable scanning times ranging 
between 1 and 5 min for a small biopsy, 5–20 min for a 
surgical specimen and 3–5 min for a liquid-based cytol-
ogy smear. Additionally, most of the current scanners 
require massive data storage capacity with 1-mm2 at × 40 
magnification resulting in a file size of 48 megabytes! To 
overcome this, most WSI platforms resort to image com-
pression algorithms (JPEG, JPEG 2000, LZW) to reduce 
size significantly. The disadvantage of this compression 
is the introduction of image artefacts which can compro-
mise overall pixel quality (Table 1) [118].

Regulation, reimbursement, and clinical adoption
Before an AI algorithm can be used in the clinical set-
ting, it is essential to get clearance by the regulatory 
bodies. For getting approved, a clear description of how 
the software works must be provided, especially for DL-
based algorithmic approaches that are perceived as a 
‘black-box’ lacking interpretability. Depending upon the 
country, The Food and Drug Administration (FDA), the 
European Medicines Agency (EMA) and other regulatory 
agencies lay down stringent guidelines and frameworks 
for ensuring scientific rigor of the reported metric. The 
FDA approval of medical devices is based on a three-class 
system with Class I devices supposed to have the lowest 
risk and Class III devices deemed to have the highest risk. 
AI-based models fall within class II or III, with class III 
requiring a rigorous premarket approval. 510(k)-approval 
pathway and De Novo pathway are some other ways of 
getting AI algorithms approved. Be as it may, the pro-
cess is highly rigorous and comprehensive [119–121]. In 
2017, Phillips got De Novo approval for introducing the 
IntelliSite Pathology Solution [19]. This was followed by 
PAIGE.AI’s FDA approval as Breakthrough Device in 
2019 [122]. Interestingly, no FDA approval was sought 
for OncotypeDX for breast cancers since it was a Clinical 
Laboratory Improvement Amendments (CLIA)-certified 
central test assay. Laboratory Developed Tests (LDTs) are 
usually complex and due to “black box” issue, the College 
of American Pathologists (CAP) has requested for a more 
stringent FDA regulation for such high-risk prognostic 
and predictive tests. At present, no dedicated procedure 

codes exist for the use of AI approaches in digital pathol-
ogy with diagnostic or prognostic intent. Once AI tools 
receive FDA approval, new procedure codes will need 
to be established to bill patients [91, 123]. CAP, work-
ing with the American Medical Association (AMA) CPT 
Editorial Panel, has successfully advocated for the inclu-
sion of 13 new digital pathology add-on codes to be effec-
tive January 1, 2023. The new codes have been accepted 
for Cat III - Digital Pathology: 0751T to 0763T. These 
new digital pathology CPT codes will be used to report 
additional clinical staff work and service requirements 
associated with digitizing glass microscope slides for pri-
mary diagnosis (Table 1) [124].

Pathologists’ dilemma-to use or not to use
A key roadblock for the incorporation of AI in clinical 
practice comes from an apprehension about the change 
in workflow. This is partly because of lack of interpret-
ability and partly due to the somewhat unclear question 
of performance thresholds of AI algorithms. While there 
is evidence of decreased error rates and improved per-
formance using a combination of DL-based model pre-
dictions with pathologist diagnoses, replacing human 
evaluation entirely by assessment by machine is met with 
considerable cynicism [115]. A study published by Wang 
have shown that a combined approach can decrease 
human error by 85% for detection of breast cancer metas-
tases in sentinel nodes [125]. Another important question 
that needs to be addressed is whether there is an actual 
decrease in overall turn-around time. Decreased ability 
to directly control diagnostic workflow and lack of clar-
ity on amount of responsibility assigned to pathologists 
while reporting using AI are some practical issues that 
need to be resolved before a meaningful human-machine 
cooperation can occur in the clinical setting [91].

Future directions and opportunities
In the past few years, there has been an increase in the 
development of AI tools for detection of cancer by vari-
ous companies like Visiopharm, Halo, Proscia, Deep-
Lens, Inspirata and PAIGE.AI. Of these, Inspirata and 
PAIGE.AI are actively involved in creating large WSI 
repositories for training DL-algorithms [91, 126, 127]. 
FDA approval of the Philips whole-slide scanner in 2017 
marked a watershed moment in the path towards digiti-
zation of clinical workflow [19]. The challenges thrown 
by the COVID-19 pandemic necessitated the adoption 
of digital workflow in daily clinical practice by some 
institutions, including ours at The Ohio State University 
Wexner Medical Center. Despite the myriad challenges 
and obstacles in the adoption of digital workflow replete 
with AI tools, there has been a paradigm shift in the land-
scape of digital pathology [91]. The advent of open-top 
light sheet microscopy which generates non-destructive, 
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slide-less three-dimensional (3D) images of tissues might 
provide a substantially greater degree of spatial and 
architectural information needed for application of AI 
approaches. Similarly, MUSE microscopy might circum-
vent the need for tissue processing and staining by pro-
viding high-resolution images of tissues using ultraviolet 
rays [128]. While current AI applications can recognize 
tumor scores and grades, in the future, most of them will 
likely continue to be in the narrow AI domain, focusing 
on only a single task [129].

Conclusions
The last few years have seen a tremendous growth in 
the development of novel AI approaches in pathology. 
These tools, when used intelligently, can improve diag-
nostic workflows, eliminate human errors, increase 
inter-observer reproducibility, and make prognostic pre-
dictions. While there has been an increase in the devel-
opment of AI tools, the integration into clinical practice 
has somewhat lagged owing to several issues related to 
interpretability, validation, regulation, generalizabil-
ity, and cost. As the need for personalized cancer care 
increases, AI applications may be implemented and used 
appropriately in conjunction with human pathologists, 
after standardized usage recommendations, and harmo-
nization with current information systems. A multimodal 
approach using proteomics, genomics, and AI-based 
multiplexed biomarker quantifications, might be neces-
sary for comprehensive patient-specific tumor precision 
therapy [91, 130].
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