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Abstract 

Background Histologic evaluation of the mucosal changes associated with celiac disease is important for establish-
ing an accurate diagnosis and monitoring the impact of investigational therapies. While the Marsh-Oberhuber clas-
sification has been used to categorize the histologic findings into discrete stages (i.e., Type 0-3c), significant variability 
has been documented between observers using this ordinal scoring system. Therefore, we evaluated whether pathol-
ogist-trained machine learning classifiers can be developed to objectively quantitate the pathological changes of vil-
lus blunting, intraepithelial lymphocytosis, and crypt hyperplasia in small intestine endoscopic biopsies.

Methods A convolutional neural network (CNN) was trained and combined with a secondary algorithm to quan-
titate intraepithelial lymphocytes (IEL) with 5 classes on CD3 immunohistochemistry whole slide images (WSI) 
and used to correlate feature outputs with ground truth modified Marsh scores in a total of 116 small intestine 
biopsies.

Results Across all samples, median %CD3 counts (positive cells/enterocytes) from villous epithelium (VE) increased 
with higher Marsh scores (Type 0%CD3 VE = 13.4; Type 1–3%CD3 VE = 41.9, p < 0.0001). Indicators of villus blunting 
and crypt hyperplasia were also observed (Type 0–2 villous epithelium/lamina propria area ratio = 0.81; Type 3a-3c 
villous epithelium/lamina propria area ratio = 0.29, p < 0.0001), and Type 0–1 crypt/villous epithelial area ratio = 0.59; 
Type 2–3 crypt/villous epithelial area ratio = 1.64, p < 0.0001). Using these individual features, a combined feature 
machine learning score (MLS) was created to evaluate a set of 28 matched pre- and post-intervention biopsies cap-
tured before and after dietary gluten restriction. The disposition of the continuous MLS paired biopsy result aligned 
with the Marsh score in 96.4% (27/28) of the cohort.

Conclusions Machine learning classifiers can be developed to objectively quantify histologic features and capture 
additional data not achievable with manual scoring. Such approaches should be further investigated to improve 
biopsy evaluation, especially for clinical trials.
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Background
Celiac disease is an autoimmune disease that occurs in 
approximately 1% of individuals worldwide as a result of 
exposure to gluten proteins [1]. Despite its broad clinical 
manifestations, as many as 83% of American patients are 
underdiagnosed and 30–50% fail to respond to a gluten 
restricted diet [2]. Diagnosis in adults relies on a combi-
nation of serology testing and small intestine tissue sam-
pling, and an appropriately obtained duodenal biopsy is 
critical to establishing an accurate diagnosis prior to life-
long diet restriction [1, 3]. The typical histologic mani-
festations of celiac disease include villus blunting, crypt 
hyperplasia, and an intraepithelial lymphocytosis [4, 5]. 
However, the mucosal changes are not evenly distributed 
throughout the small intestine and are subject to misin-
terpretation due to improper embedding which high-
lights the importance of proper tissue biopsy handling 
[6].

While maintenance of a gluten free diet is the pri-
mary treatment approach to celiac disease, the burden 
of adhering to a restricted diet makes compliance a chal-
lenge for many patients. Several pharmacologic inter-
ventions are being investigated to provide patients with 
additional treatment options [7, 8]. The U.S. FDA recently 
released draft guidance for industry on the development 
of drugs for adjunctive treatments to help address this 
unmet need. In this document, the agency suggests spon-
sors obtain biopsy assessments at screening and following 
treatment to assess the efficacy and durability of response 
using a clinically accepted scale [9]. This announcement 
highlights the importance of being able to reproducibly 
characterize the histopathologic changes that occur in 
biopsies collected during investigational trials.

Standardized reporting schemes, such as the Marsh-
Oberhuber (i.e. modified Marsh) classification, cat-
egorize the histologic findings into distinct types with 
reference to features observed at specific stages along 
the disease spectrum [10]. The modified Marsh classi-
fication specifically assesses the number of intraepithe-
lial lymphocytes per 100 enterocytes within the most 
inflamed areas, crypt architecture, and villus length 
to define 6 categories of disease severity (Type 0-3c). 
Despite widespread use of this classification and associ-
ated scoring approaches, inter-pathologist agreement is 
suboptimal with mean kappa values between 0.35 and 
0.55 [11]. To address the limitations of observer vari-
ability, morphometric analyses have been developed 
to standardize biopsy readouts [6]. Yet while these 
approaches have made microscopic assessment less 

subjective, they require significant pathologist effort, 
often at a centralized laboratory, and are still subject to 
nuanced sources of observer variability including iden-
tification of the villus-crypt border [12].

The ability to overcome inherent limitations with 
manual scoring, which often relies on categorizing 
observations using an ordinal scale, is being investi-
gated using artificial intelligence (AI) and machine 
learning (ML) approaches [13]. ML describes a type 
of AI that uses computers to algorithmically define 
patterns in example data and applies that information 
to new examples for classification or prediction [14]. 
Technical advances resulting from improved CNNs, 
graphical processing units, and the commercial avail-
ability of user-friendly classification and segmentation 
tools has led to significant advancements in machine 
learning applications [14]. The wide application of AI to 
pathology and laboratory medicine is becoming broadly 
recognized [14–16], and its value proposition includes 
reduction of health care costs, improved access, and 
enhancement of care delivery including reduction of 
the imprecision that can accompany histological classi-
fications [16]. Recent ML applications have focused on 
quantitating image features to improve histology-based 
assessments, identifying the presence of tumor, pre-
dicting genetic status, and enhancing disease staging 
[17–21]. Although prior investigations have assessed 
computational approaches to the histologic diagnosis 
of celiac disease using H&E images [22–27], many of 
these appear to be driven by expertise in the domains of 
data science, computer programming, and AI engineer-
ing. To our knowledge, few have attempted to highlight 
the ability of pathologists to train, develop, and employ 
user-friendly ML classifiers to address the practical 
challenges of developing histology-based solutions 
despite the increased attention AI tools are receiving in 
pathology journals [14, 16, 28].

Therefore, in this pilot study we aim to investigate 
the feasibility of customizing and employing an off-the-
shelf, commercially available, histopathology-focused 
AI software application to quantitatively characterize 
disease severity using celiac disease as a model system. 
We test the hypothesis that a pathologist-developed 
and deployed machine classifier can accurately inform 
analysis of the associated histopathologic changes. 
Quantitative microscopic features representing surro-
gate attributes of the modified Marsh score (e.g., vil-
lus blunting, intraepithelial lymphocytosis, and crypt 
hyperplasia) are evaluated using correlation with the 
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manual assessment as ground-truth. A combined 
machine learning score produced from individual fea-
ture components is derived, and the utility of this his-
tologic classifier is examined using individual paired 
biopsy sets captured before and after initiation of a glu-
ten restricted diet.

Methods
Sample acquisition and slide preparation
Endoscopic biopsy cases from the Wake Forest Uni-
versity pathology laboratory archive were searched for 
the diagnosis of celiac disease from December 16, 2011 
to May 13, 2022, and accompanying pathology reports 
were reviewed. Eligible, de-identified, archival samples 
were obtained according to the protocols and procedures 
approved by the Institutional Review Board of Wake For-
est University School of Medicine (IRB #00074626). A 
total of 116 small intestine biopsies from cases of celiac 
disease and non-disease controls were obtained. When 
available, the Marsh score from the original diagnos-
tic evaluation was captured. Twenty-eight paired cases 
were included (i.e., initial biopsies that were performed 
to evaluate the presence of celiac disease with a follow-
up biopsy to assess response to a gluten-free diet). The 
formalin-fixed, paraffin embedded (FFPE) blocks were 
microtomed, producing 5 μm sections for hematoxy-
lin and eosin staining (H&E) and immunohistochemis-
try (IHC) using a pre-diluted titer of anti-CD3 (2GV6, 

Roche, Tucson, AZ) or a 1:3000 titer of anti-apolipo-
protein A4 (ApoA4; G-8, Santa Cruz, Dallas, TX) on the 
Ventana DISCOVERY ULTRA platform (Roche) with 
DISCOVERY ChromoMap DAB detection (Roche). All 
cases were centrally evaluated using the modified Marsh 
classification by a board-certified physician specializing 
in gastrointestinal pathology (HYL) without knowledge 
of the ML classifier results. Discrepancies with the origi-
nal diagnostic score were discussed among participat-
ing pathologists and a consensus score was produced for 
study use as needed.

Slide scanning and machine learning tissue classifier
Specimens were randomized into training or test sets for 
machine learning classification as described in Table  1. 
Whole slide images were digitized with the Leica AT2 
scanner (Leica Biosystems, Buffalo Grove, IL) at 40x 
magnification and imported into a HP Z640 with 128GB 
RAM with an NVIDIA GeForce RTX 2080 Ti graph-
ics processing unit. HALO AI image analysis software 
(v3.21851.328; Indica labs, Albuquerque, NM) was used 
to perform training and analysis of specific tissue regions 
in the duodenal biopsy samples. Prior to image analy-
sis, regions with significant artifact (e.g., tissue folds, air 
bubbles, excessive mounting media) and tissue areas not 
suited for analysis were excluded (e.g., improper orien-
tation, inadequate villi). Training cases were selected to 
represent normal duodenum and a spectrum of modified 

Table 1 Composition of the study training and test sets

Percentages may not equal 100 due to rounding
a Category includes non-disease controls

NOS not otherwise specified

Characteristic Total Study (N = 116) Training Set (N = 10) Test Set (N = 106)

Age category Count (%) Count (%) Count (%)

  ≤ 21 years 75 (65) 6 (60) 69 (65)

  > 21 years 41 (35) 4 (40) 37 (35)

Sex

 Male 58 (50) 6 (60) 52 (49)

 Female 58 (50) 4 (40) 54 (51)

Documented biopsy location

 Duodenal bulb 4 (3) 0 (0) 4 (4)

 Duodenum, NOS 98 (84) 10 (100) 88 (76)

 Small intestine, NOS 14 (12) 0 (0) 14 (13)

Modified Marsh classification

 Type  0a 42 (36) 2 (20) 40 (38)

 Type 1 10 (9) 1 (10) 9 (8)

 Type II 2 (2) 0 (0) 2 (2)

 Type IIIa 23 (20) 2 (20) 21 (20)

 Type IIIb 37 (32) 5 (50) 32 (30)

 Type IIIc 2 (2) 0 (0) 2 (2)
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Marsh scores from 1 to 3c. Ten cases were pathologist 
annotated to encompass tissue class features (i.e., villous 
epithelium, crypts, lamina propria, submucosa [including 
Brunners glands] and white space). A total of 892 annota-
tions, involving a composite area of  21mm2, were made 
on the CD3-labeled WSI. Training of the classifier model 
was initially performed using the miniNet convolutional 
neural network (CNN) until convergence to a cross 
entropy less than 0.15. Tissue classification results were 
reviewed by two pathologists (KMC, AMG). As perfor-
mance was largely adequate, but some errors occurred, 
the set was trained a second time using the DenseNet2 
CNN which can learn more complex patterns due to 
its larger model size. The Densenet2 CNN was trained 
on the annotations with a resolution of 2 μm/pixel and 
a minimum object size of 200μm2 over 21,000 itera-
tions until a cross entropy of 0.15 was achieved. In cases 
where the deep learning classifier misidentified regions, 
corrective annotations were added, and the model was 
retrained over multiple iterations until the desired per-
formance metrics were achieved. Resultant classification 
overlay areas on all 116 cases were reviewed and deemed 
appropriate for further investigation.

Image analysis routine for CD3 immuno‑positive 
and negative cells
For quantitation of CD3 positive T-cells, an image anal-
ysis routine was created in the multiplex IHC HALO 
module (Multiplex IHC v3.2.3), to identify 3,3′-diamin-
obenzidine (DAB) cytoplasmic regions of positive lym-
phocytes and all cell nuclei by hematoxylin with both 
thresholds set by the pathologist. Nuclear segmentation 
was performed by the nuclei segmentation AI plug-in 
classifier. The classified areas of villous epithelium and 
crypt epithelium identified by the trained DenseNet2 
classifier were specifically included as regions for quan-
titation by the CD3-positive cell image analysis routine. 
The optimized multiplex IHC algorithm performed on 
the CD3-labeled images quantified the percent CD3 posi-
tive cells within the villous and crypt epithelium sepa-
rately (CD3 positive cells/enterocytes).

Analysis of machine learning tissue classifier data 
and statistics
Area data from the tissue classifier were used to gener-
ate the ratio of villous epithelium/lamina propria as a 
surrogate measure of villus height and the ratio of crypt 
epithelium/villous epithelium data was used as a sur-
rogate measure of crypt hyperplasia. These proportion-
ate area measurements were quantified and reported in 
 mm2. An unpaired, two-tailed t-test was used to com-
pare median values of modified Marsh score categories 
grouped either according to categories representative of 

the class type where a relevant histologic change mani-
fests, or as “Type 0–1” and “Type 2–3” categories based 
upon the cut-off employed in the diagnostic approach 
for suspected celiac disease in an adult patient on a gluten 
containing diet [29].

Generation of machine learning score and analysis method 
workflow
To produce the combined feature machine learning score 
(MLS), a linear regression was modelled on the combina-
tion of the computed ratio of villous epithelium to lamina 
propria area (VE ratio), the ratio of crypt epithelium area 
to villous epithelium area (CE ratio), and the fraction of 
CD3 positive cells in the villous epithelium (%CD3 VE). 
The regression was trained based on samples with mul-
tiple time points available for a total of 67 data points. 
The ground-truth modified Marsh scores of 3a/3b/3c 
were transformed to numeric values of 3.0, 3.333, and 
3.666, respectively. The resulting fitted regression model 
was MLS = 0.872–1.03 (VE ratio) + 0.20 (CE ratio) + 3.92 
(%CD3 VE). The overall regression was statistically 
significant  (R2 = 0.6156, F(3,63) = 36.2, p = 9.86e-14). 
It was found that the VE ratio and %CD3 VE signifi-
cantly predicted the Marsh score (p = 0.023 and 8.68e-6 
respectively), but the CE ratio did not (p = 0.1369). This 
regression model formula was used to evaluate the 
remaining images of the entire sample set and create con-
tinuous MLS outputs from the individual ML features 
described above. Therefore, the analysis method work-
flow was to: 1) run the machine learning tissue classi-
fier on the CD3-immunostained WSI to generate tissue 
region area data, 2) perform the multiplex IHC routine 
to quantitate CD3-positive and negative cells on the same 
WSI, 3) collect the CD3 positive cell counts from the vil-
lous and crypt epithelium as identified by the tissue clas-
sifier, and 4) apply the MLS model to the tissue area and 
CD3 positive cell quantitative data. For creation of con-
fusion matrices, the continuous machine learning score 
was converted to an ordinal scale by assigning the closest 
value number, using values of 3.0/3.333/3.666 for scores 
of 3a/3b/3c respectively. Data analysis and visualization 
were performed using Graph Pad Prism (version 9.4.1) or 
R (version 4.2.2).

Results
Classifier assessments of modified marsh score 
components
For an initial evaluation of the trained classifiers, we 
hypothesized that normalized areas of the villous and 
crypt epithelial compartments could be used as a sur-
rogate for the assessments of villus height and crypt 
hyperplasia included in the modified Marsh classifica-
tion. Therefore, quantitative class area measurements 
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associated with the highlighted overlay regions identified 
from analyzed biopsy tissues (N = 116) were exported 
from the analysis software for comparison with manu-
ally obtained scores. Representative classified tissue 
overlays are shown in comparison with the raw histology 
images for reference (Fig. 1). Based upon a prior report 
highlighting the use of IHC to increase the precision of 
morphometry measurements [12], ApoA4 IHC was per-
formed as an aid to evaluate the ability of the classifier 
to distinguish the villus-crypt border (Supplemental 
Fig. 1). Most images demonstrated an overlay consistent 
with ApoA4 IHC immunoreactivity, though some areas 
of discordance were observed at the base of villi and a 
few of the samples failed to stain. As a surrogate for vil-
lus height, the total area classified as villous epithelium 
divided by the total area classified as lamina propria 
was calculated per sample. Comparison of this ratio to 
the reference modified Marsh score categories demon-
strated a significant correlation of decreased normal-
ized area with an increased manual score indicative of 
villus blunting (Fig.2A). The median villous epithelium/
lamina propria area ratio was 0.81 for Type 0–2 samples 
and 0.29 for Type 3a-3c, (95% CI − 0.66 to − 0.43, Eta 
squared = 0.4423, p < 0.0001).

A similar approach was used as an assessment of 
crypt hyperplasia by dividing the total area classified as 
crypt epithelium by the total area classified as villous 

epithelium. Comparison of this ratio to the manual score 
categories demonstrated a significant correlation of 
increased normalized area with increased Marsh type 
indicating crypt hyperplasia (Fig. 2B). The median crypt 
epithelium/villous area ratio was 0.59 for Type 0–1 sam-
ples and 1.64 for Type 2–3 samples, (95% CI 0.89 to 1.62, 
Eta squared = 0.2937, p < 0.0001). For the assessment of 
intraepithelial lymphocytosis, the %CD3 VE (CD3 posi-
tive cells/enterocytes) measured specifically in the vil-
lous epithelial compartment was employed. Comparison 
of these values with reference modified Marsh score 
categories demonstrated a significant correlation of 
increased %CD3 VE with increased manual score signi-
fying intraepithelial lymphocytosis (Fig. 2C). The median 
%CD3 VE was 13.4% for Type 0 and 41.9% for Type 1–3, 
Eta squared = 0.4058, p < 0.0001. Once the assessments 
of villus height and crypt hyperplasia were generated, 
we investigated the possibility of using these to create a 
surrogate measure for a villus height to crypt depth ratio. 
The median values of this relationship were 1.70 for Type 
0–1 samples and 0.61 for Type 2-3a-c, 95% CI − 1.38 to 
− 0.61 Eta squared = 0.1897, p < 0.0001 (Fig.  2D). Classi-
fier features plotted by “Type 0–1” and “Type 2–3” cat-
egories were also investigated and showed similar results 
(Supplemental Fig. 2).

The potential for the amount of tissue collected in 
the endoscopic duodenal biopsy samples to impact 

Fig. 1 A and E Normal duodenal tissue and biopsy sample with a modified Marsh score of 3b (H&E), respectively; B and F) same samples showing 
the tissue classifier overlay (villous epithelium in pink, crypt epithelium in purple, lamina propria in green and submucosa with Brunners glands 
in red, white space in blue); C) and G) CD3 IHC; D and H) slightly higher magnification showing the CD3 IHC overlay image with nuclei in blue 
and positive cells with yellow outlines
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classifier performance was assessed by comparing tis-
sue areas for the Type 0–1 and Type 2–3 samples. The 
median size of the Type 0–1 samples was 5.0  mm2 and 
7.1  mm2 for the Type 2–3 samples, which was not statis-
tically different (Supplemental Fig. 3A). The range of all 
biopsy sample sizes was 0.6mm2 to 28.1mm2. Addition-
ally, an assessment of intraepithelial lymphocytosis in 
younger versus older patients was made. The %CD3 VE 
was not statistically different in Type 0–1 samples when 
comparing patients up to 20 years of age (median %CD3 
VE = 14.9%) and those 21 years of age and older (median 
%CD3 VE = 17.4). Similarly, the %CD3 VE was not sta-
tistically different in Type 2–3 samples from patients up 
to 20 years of age compared (%CD3 VE = 46.0%) to those 
21 years and older (%CD3 VE = 40.5%) (Supplemental 
Fig. 3B).

Creation of a machine learning combined feature score 
for exploratory celiac disease histology assessments
Because the modified Marsh types can be conceptual-
ized as a unified category based upon assessment of three 
individual histologic features of celiac disease pathol-
ogy, we sought to understand whether the individual 

machine learning outputs could be used to create a use-
ful combined feature MLS. It was apparent from assess-
ment of the individual features that not all had an equally 
strong correlation with the manually derived modi-
fied Marsh score categories. Association was strongest 
with the villous height measurement and weakest with 
the assessment of crypt hyperplasia (0.4499 vs. 0.2875, 
respectively) with the strength of the median %CD3 
VE correlation falling in between (0.4012). Therefore, a 
regression analysis was performed on the subset of tis-
sue samples (N = 67) derived from patients who had more 
than one biopsy submitted for analysis to determine an 
appropriate weighting scheme for these variables. The 
resulting MLS can be expressed as either a continu-
ous variable in decimal format or converted to an ordi-
nal scale for direct comparison with the ground-truth 
modified Marsh scores as described in the Materials and 
Methods section.

Using this combined MLS approach, we next expanded 
the analysis to examine the relationship between the 
combined feature score and the reference modified 
Marsh type across the entire set of 116 samples (Fig. 3). 
A confusion matrix of these combined feature scores 

Fig. 2 A The ratio of the area of villous epithelium (VE) to the area of lamina propria serves as a surrogate for villus height or blunting 
when comparing by grouped modified Marsh score categories, *p < 0.0001. B) The ratio of crypt epithelium (CE) area to villous epithelium area 
is a surrogate for crypt hyperplasia, *p < 0.0001. C The number of CD3 immuno-positive lymphocytes divided by the total number of villous 
enterocytes was determined, *p < 0.0001. D The ratio of the area of villous epithelium to the crypt epithelium is a surrogate for the ratio of villus 
height to crypt depth, *p < 0.0001
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examined by individual Marsh type was also explored 
(Table  2). A heat map of this confusion matrix demon-
strated performance of the converted MLS and ground-
truth Marsh score (Supplemental Fig.  4). The median 
MLS for Type 0 samples was 0.73, while the median val-
ues for Type 3a and Type 3b were 2.04 and 2.80, respec-
tively. The median values for Type 2 (2.67) and Type 3c 
(4.08) aligned with the general observation of increasing 
MLS with increasing Marsh score; however, the number 
of samples in these categories are few.

Because the performance of the combined MLS across 
both sample groups appeared promising, we sought to 
investigate the utility of this approach for categorizing 
the change in histologic features after clinical interven-
tion. For this experiment, the combined feature score 
was evaluated in the context of paired biopsy samples 
captured from the same patient both before and after 
initiation of a gluten restricted diet (Fig. 4). This cohort 
of 28 patients included 27 matched sample pairs that 

demonstrated mucosal healing by modified Marsh score 
(i.e., a manual score response) and one that displayed no 
change in Marsh score (pair 5). In total, the disposition 
of the paired biopsy MLS result aligned with the Marsh 
score in 100% (N = 27/27) of the cohort and in 96.4% 
(N = 27/28) of all matched pairs due to the one patient 
whose biopsies did not demonstrate a change by Marsh 
score after diet restriction. (Table 3). Among paired biop-
sies, the median continuous MLS was 2.72 in “pre-biop-
sies” and 0.78 in “post-biopsies” with a range of 0.82–4.28 
and − 1.23-3.49 in ML scores, respectively.

Post‑analysis assessment of discordant cases among paired 
biopsy samples
While most of the machine learning combined 
feature scores correlated with their associated 
manually derived modified Marsh results, some dis-
crepancies were noted upon post-analysis assessment. 
As described in the regression analysis, the directional 

Fig. 3 Relationship between the continuous machine learning 
combined feature score (MLS) and the reference modified Marsh 
score

Table 2 Confusion matrix of machine learning combined feature score converted to an ordinal scale compared with the modified 
Marsh type

a The machine learning score was converted to an ordinal scale by assigning the closest number, using values of 3.0/3.333/3.666 for scores of 3a/3b/3c respectively

Machine Learning  Scorea

0 1 2 3a 3b 3c

Modified Marsh Score 0 16 20 6 0 0 0

1 2 4 4 0 0 0

2 0 0 1 1 0 0

3a 1 4 9 6 2 1

3b 0 2 13 11 4 7

3c 0 0 0 0 0 2

Fig. 4 Change in continuous machine learning score (MLS) in 28 
patients with matched pairs of duodenal biopsy samples collected 
from before and after dietary intervention
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changes in the %CD3 VE data strongly aligned with 
ground truth Marsh scores in the paired samples that 
responded to diet restriction with only one case failing 
to show a similar directional response in %CD3 VE to 
the improvement in Marsh score. In that case (pair 28), 
the other features of surrogate villus height and crypt 
size aligned appropriately to the Marsh scores but the 
weight of the %CD3 VE affected the MLS. Similarly, 
only one case did not show a directional alignment in 
treatment response in the villus height surrogate fea-
ture. The weakest surrogate feature, crypt area, was 
discordant in 27% of the responding pairs. The classi-
fier overlays for those cases were reviewed again and 
in most, no cause for the non-alignment was observed, 
such as errors in the classifier assignments. In some 
cases, it appeared that one possible cause could be 

related to the small size of the sample and/or sub-opti-
mal orientation of the pre-biopsy resulting in minimal 
sampling of the crypts (pair 17).

Discussion
Histologic assessment of small intestine biopsies is a 
critical tool for the diagnosis of celiac disease and has 
been used as a co-primary endpoint in the assessment 
of investigational therapies [30]. Yet, significant observer 
variability exists among pathologists when using tradi-
tional scoring schemes [11]. The current availability of 
user-friendly, histopathology-focused AI software pre-
sents a unique opportunity for pathologists to become 
more engaged with advancements in computer vision 
that are rapidly impacting the practice of medicine. In 
this study, we developed pathologist-trained machine 

Table 3 Evaluation of paired-biopsy samples

Matched Pair Modified Marsh Score Continuous Machine Learning Score

Pre‑ Biopsy Post‑ Biopsy Manual Score 
Response

Pre‑ Biopsy Post‑ Biopsy Alignment 
with Manual 
Score

1 3b 0 Yes 3.95 1.63 Yes

2 3a 0 Yes 0.82 −0.20 Yes

3 3b 0 Yes 2.44 0.11 4 Yes

4 3b 1 Yes 2.22 0.21 Yes

5 3a 3a No 2.46 3.49 No

6 3b 0 Yes 3.78 −0.21 Yes

7 3b 0 Yes 2.85 1.52 Yes

8 3a 0 Yes 2.65 0.02 Yes

9 3b 0 Yes 2.44 1.15 Yes

10 1 0 Yes 1.57 0.78 Yes

11 3b 3a Yes 3.48 1.65 Yes

12 3b 0 Yes 3.56 0.61 Yes

13 3b 1 Yes 2.80 1.51 Yes

14 3a 0 Yes 3.56 0.56 Yes

15 3a 0 Yes 1.27 0.55 Yes

16 2 1 Yes 2.28 0.93 Yes

17 3b 0 Yes 2.36 1.65 Yes

18 3b 0 Yes 4.28 0.40 Yes

19 3a 0 Yes 2.60 0.00 Yes

20 3b 0 Yes 1.70 0.98 Yes

21 3c 3b Yes 3.71 1.70 Yes

22 3a 0 Yes 1.80 0.78 Yes

23 3b 0 Yes 3.06 −1.23 Yes

24 3b 0 Yes 2.96 0.71 Yes

25 3a 0 Yes 2.51 0.47 Yes

26 3b 0 Yes 3.38 0.87 Yes

27 3b 3a Yes 3.02 1.96 Yes

28 3b 0 Yes 3.13 1.13 Yes
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learning classifiers with commercially available, user-
friendly, AI software to characterize the histopathologic 
features of celiac disease from standard immunohisto-
chemical-stained tissue sections. While use of the mini-
Net network accurately classified a majority of features 
appropriately, ultimately the denseNet2 classifier was 
used for this pilot study given its superior performance as 
inferred from pathologist review of the resulting overlays. 
The feasibility of this approach was tested by characteriz-
ing a set of paired biopsies before and after dietary inter-
vention to mimic a retrospective exploratory assessment 
conducted in the setting of a clinical trial. Comparison 
of this machine learning method to the modified Marsh 
scores was favorable, with correlation observed across 
Marsh types, and > 90% concordance with manual score 
outcomes among matched biopsies in this limited sample 
set.

Machine learning is becoming an important tool to 
augment the traditional microscopic assessment of his-
tology images across multiple disciplines [21, 31, 32]. Pri-
mary advantages of ML-assisted pathologist evaluations 
include: 1) amelioration of the intra−/inter-observer 
variability associated with manual scoring approaches, 
and 2) generation of objective, quantitative results with 
which subtle changes in the histologic features of biopsy 
samples may be measured. While Level I evidence gen-
erated from a prospective clinical trial is not yet publicly 
available, these themes intuitively span multiple tissue 
types and classification systems. For example, a pixel 
level quantitative assessment of fibrosis to assess disease 
staging for non-alcoholic steatohepatitis (NASH) is being 
investigated as an alternative to the ordinal scoring sys-
tem developed by the NASH Clinical Research Network 
[21]. The benefit of this approach was retrospectively 
demonstrated to reduce placebo effect and increase treat-
ment response compared to the manual scores produced 
by a central pathologist. We hypothesize a similar finding 
could be observed from the use of ML classifiers for the 
assessment of celiac disease given the degree to which 
quantitative machine learning scoring systems would 
potentially facilitate detection of more subtle histologic 
changes in the context of adjunctive treatment investi-
gations. The expansive nature of data acquired from cell 
and tissue based models, for example those that focus on 
reporting human interpretable features comprising > 600 
computer vision derived outputs [18, 32], illustrates the 
possibility for machine learning to transform the way 
pathologists develop histology based scoring systems and 
invites discovery of relationships not apparent with tradi-
tional scoring methodology.

The first reports of the use of AI in the evaluation of 
celiac disease histopathology were published in 2019 
through 2022. An initial study utilizing WSI of celiac 

disease biopsies, unaffected duodenal tissue, and non-
specific duodenitis applied a weakly supervised approach 
by assigning pathologist-derived diagnoses at the level 
of the image on a set of example cases that then were 
used to train the CNN to predict the diagnoses of future 
test cases, resulting in a high accuracy within the test 
set [23]. At that same time, several groups used similar 
approaches to compare and predict diagnoses of celiac 
disease versus normal duodenum [33], celiac disease by 
modified Marsh score [24], celiac disease versus environ-
mental enteropathy [34–36], and celiac disease by modi-
fied Marsh score versus environmental enteropathy [21] 
using CNNs, resulting in high accuracy in their limited 
study sets.

Several of these prior publications also employed tech-
niques to address explainability of the algorithm or the 
“black box” problem by using activation mapping and 
other methods to apply heat maps to the images that 
highlight those parts of the tissues most important in 
predicting the diagnosis. The promise of this approach is 
that pathologist review of these highlighted images can 
provide new information on the biology and pathology of 
these diseases. The Syed publication in 2021 also began 
to employ ensemble methods, combining algorithms cre-
ated by different CNNs, to improve accuracy. One group 
during this period developed algorithms to discriminate 
modified Marsh scores in celiac disease histology using 
conventional machine learning classifiers, such as sup-
port vector machines and Adaboost rather than CNNs, 
with similar accuracy in their results [25]. A recent report 
focused on diagnosing celiac disease split by modified 
Marsh scores versus environmental enteropathy using a 
CNN derived algorithm, and also incorporating manual 
morphometry techniques to obtain cell counts in villi, 
crypts and lamina propria and villi height- crypt depth 
measurements [37]. The application of the CNNs in the 
Halo AI software in our study uniquely focused not on 
training algorithms to predict diagnoses, but to gener-
ate tools to more easily create surrogates for onerously 
derived manual morphometric data, difficult to measure 
features such as villus height to crypt depth, and more 
detailed continuous data to describe celiac disease fea-
tures beyond ordinal scores.

This pilot study is not without limitations which 
include a relatively small sample size collected from 
a single institution, and the inability to test biopsy 
samples collected as part of a clinical trial to directly 
measure adjunctive treatment effect. Class imbalance 
in the dataset (i.e., relatively few cases of Marsh Type 2 
and Type 3c) may have influenced the linear regression 
by producing a reduced weight for the CE ratio. While 
this could have resulted in a tighter range of MLS val-
ues than might be observed in a larger sample set, it 
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did not appear to diminish the ability of the model to 
resolve subcategory changes in paired biopsies before 
and after dietary gluten restriction (e.g., matched pairs 
11, 21, and 27). One other concern was that by deter-
mining the %CD3 positive cells  across the entire vil-
lous epithelium, we could possibly “dilute” or overlook 
focal areas of high intraepithelial lymphocytosis and 
those cases would receive lower %CD3 VE as com-
pared to manual scores. Overall, most Type 2-3c sam-
ples demonstrated multifocal to diffuse intraepithelial 
lymphocytosis so that the %CD3 VE was representa-
tive of the samples. However, an “undercount” was 
noted in one sample (pair 28 pre-biopsy), affecting the 
MLS and resulting in non-alignment with the Marsh 
score. This underscores the fact that these ML quan-
titative methods are adjuncts to the pathologist review 
and are not replacements. Similarly, these ML classi-
fiers are applied to samples regardless of their appro-
priate orientation. In this case, each WSI was reviewed 
by a pathologist and only the acceptable samples were 
selected for analysis. In the future, more sophisticated 
ML tools may be developed that will also perform 
more complex assessments such as small intestine 
endoscopic biopsy orientation.

Strengths of the study include the use of samples 
comprising a spectrum of celiac disease severity and 
the use of immunohistochemical stains to evaluate 
individual cellular (e.g., CD3) and tissue specific (e.g., 
ApoA4) features of the resulting CNN overlay images 
to confirm classifier accuracy. The observation that the 
highest correlations between individual ML compo-
nents and modified Marsh score were the VE ratio and 
IEL measured by %CD3 is not surprising. The ability 
of CD3 IHC to assist in the identification of intraepi-
thelial lymphocytosis has long been recommended 
[10], and the use of 40 lymphocytes as the cut-off value 
for IEL in the modified Marsh classification is the only 
numerically defined feature. Prior studies have also 
suggested that lymphocytic analysis is less impacted 
by plane of sectioning than villus or crypt architecture, 
both of which are impacted by biopsy orientation [6]. 
Unlike the villus assessment, which is represented in 3 
categories of “mild atrophy”, “moderate  atrophy”, and 
“marked atrophy” with increasing disease type, the 
crypt evaluation is characterized as either “normal” 
or “hyperplastic/hypertrophic” in the modified Marsh 
scheme. It was interesting to observe that the machine 
learning surrogate of crypt hyperplasia from the pre-
sent study was also the feature with the weakest cor-
relation to the ground truth Marsh scores, indicating 
that classifier performance for this feature aligns with 
the real-world experience of crypt hyperplasia being a 
relatively poor indicator of celiac disease.

Conclusions
In summary, we describe a novel approach for using pathol-
ogist-trained machine learning classifiers for the assessment 
of celiac disease biopsies. While other viable approaches are 
examining the ability to classify disease features from H&E 
stained tissues [27], this method demonstrated the feasibil-
ity of customizing off-the-shelf, AI software to objectively 
quantify histopathologic features from routinely processed 
and immune-stained sections available in the standard 
clinical laboratory. Future work with larger cohorts will be 
needed to understand the impact of disease heterogene-
ity on classifier performance and explore model generaliz-
ability. Machine learning models for the characterization 
of celiac disease should be further investigated to improve 
biopsy evaluation, assess disease severity, and characterize 
response to therapeutic interventions.
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