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A risk model based on 10 ferroptosis 
regulators and markers established by LASSO-
regularized linear Cox regression has a good 
prognostic value for ovarian cancer patients
Tingchuan Xiong1, Yinghong Wang2 and Changjun Zhu3,4* 

Abstract 

Ovarian cancer is the deadliest gynecologic cancer due to its high rate of recurrence and limited early diagnosis. 
For certain patients, particularly those with recurring disorders, standard treatment alone is insufficient in the majority 
of cases. Ferroptosis, an iron- and ROS (reactive oxygen species)-reliant cell death, plays a vital role in the occurrence 
of ovarian cancer. Herein, subjects from TCGA-OV were calculated for immune scores using the ESTIMATE algorithm 
and assigned into high- (N = 185) or low-immune (N = 193) score groups; 259 ferroptosis regulators and markers were 
analyzed for expression, and 64 were significantly differentially expressed between two groups. These 64 differen-
tially expressed genes were applied for LASSO-regularized linear Cox regression for establishing ferroptosis regula-
tors and a markers-based risk model, and a 10-gene signature was established. The ROC curve indicated that the risk 
score-based curve showed satisfactory predictive efficiency. Univariate and multivariate Cox risk regression analyses 
showed that age and risk score were risk factors for ovarian cancer patients’ overall survival; patients in the high-risk 
score group obtained lower immune scores. The Nomogram analysis indicated that the model has a good prognostic 
performance. GO functional enrichment annotation confirmed again the involvement of these 10 genes in ferroptosis 
and immune activities. TIMER online analysis showed that risk factors and immune cells were significantly correlated. 
In conclusion, the risk model based on 10 ferroptosis regulators and markers has a good prognostic value for ovarian 
cancer patients.

Keywords Ovarian cancer, ESTIMATE algorithm, Immune score, 10-ferroptosis regulator and marker signature, LASSO-
regularized linear Cox regression

Introduction
Ovarian cancer is the deadliest gynecologic cancer due 
to its high rate of recurrence and limited early diagnosis 
[1], putting a huge cost upon patients and society. There 
has been a considerable decrease in the incidence and 
death rates of ovarian cancer over the last several decades 
because of advancements in therapy; however, the death 
rate from ovarian cancer remains high, and less than 
one-half of patients survive for more than five years [2]. 
Modern treatments for ovarian cancer patients vary with 
individual specialty, depending on histological type and 
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cancer stage. In general, the standard of care for patients 
with ovarian cancer consists of primary debulking sur-
gery and platinum-based combination chemotherapy [3]. 
Nevertheless, for certain patients, particularly those with 
recurring disorders, standard treatment alone is insuffi-
cient in the majority of cases.

Ferroptosis, a distinct form of programmed cell death, 
was first described in 2012 by Dixon [4]. Ferroptosis, in 
contrast to autophagy and apoptosis, is defined as an 
iron- and ROS (reactive oxygen species)-dependent cell 
death characterized primarily by cytological alterations, 
such as diminished or disappeared mitochondrial cristae, 
rupture of outer mitochondrial membrane [5–9]. These 
cellular abnormalities were caused by a loss of plasma 
membrane selective permeability as a result of severe 
membrane lipid peroxidation and the initiation of oxida-
tive stress [10]. Ferroptosis process regulation involves 
various genes, which could be briefly grouped into driv-
ers that drive ferroptosis, suppressors that suppress 
ferroptosis, and markers that indicate ferroptosis occur-
rence [11]. Accumulating evidence has indicated that 
ferroptosis is closely correlated with various diseases, 
including neurodegenerative disorders [12], ischemia/
reperfusion damage [13, 14], acute renal injury [15], and 
malignancies, etc. Thus, ferroptosis regulators and mark-
ers might be potential targets and markers for diseases, 
including cancers.

A large body of data suggests the inhibitory effect of 
ferroptotic cell death on tumor development. Despite 
the fact that oxidative phosphorylation is most effective 
in the production of ATP, numerous tumor cells under-
going metabolic reprogramming primarily produce ATP 
from cytosolic aerobic glycolysis combined with lactate 
fermentation. This metabolic reprogramming in malig-
nancies was notably found in the 1920s by Warburg and 
Cori and has been proposed as a tumor cell way to pre-
vent toxic ROS levels [16, 17]. Nevertheless, maintaining 
this Warburg effect necessitates elevated glucose uptake 
and increased metabolic activity which make cancer cells 
significantly dependent on the anti-oxidant mechanism 
and possibly even more vulnerable to oxidative stress 
[18, 19]. As a result, highly proliferative tumor cells have 
been found to require handling of increased ROS levels 
in order to effectively develop tumors [20–22]. Thus, can-
cer cells have a much higher demand for iron than non-
cancer cells and such reliance upon iron will make tumor 
cells more sensitive to ferroptosis. Cancer cells also have 
ROS tolerance and dependence on iron in metabolism, 
making them more susceptible to ferroptosis. Given 
these previous findings, ferroptosis regulators (drivers 
and suppressors) and markers might be promising and 
therapeutic targets for cancer. Regarding ovarian cancer, 
a potential link between ferroptosis and ovarian cancer is 

demonstrated based on previous studies [23, 24], and a 
focus on ferroptosis may provide a sophisticated thera-
peutic strategy for treating ovarian cancer [25]. Immu-
notherapy, including immune checkpoint inhibitors, 
has been used to treat ovarian cancer [26]. It is clinically 
important to investigate the factors affecting the progno-
sis of immunotherapy. Accumulating evidence suggests 
that ferroptosis plays a crucial role in immune evasion 
[26]. In turn, in immunotherapy, CD8 + T cells can trig-
ger ferroptosis in cancer cells [27]. Targeting ferroptosis 
in combination with immunotherapy might become a 
prospective strategy for cancer therapy.

Although several studies have proposed a variety of 
prognostic models based on differentially expressed 
genes between ovarian cancer and para-cancerous 
samples, the sensitivity and specificity of these predic-
tion models remain unsatisfactory. Recently, the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
has been proposed as a regression algorithm for high-
dimensional data [28], which was applied to select the 
most prominent predictive characteristics in the train-
ing dataset. Herein, cases of ovarian cancer patients with 
clinical information and expression profile information 
were obtained from The Cancer Genome Atlas Ovarian 
Cancer (TCGA-OV). Cases were calculated for immune 
scores using the Estimation of Stromal and Immune cells 
in Malignant Tumors using Expression data (ESTIMATE) 
algorithm [29], ferroptosis regulators and markers were 
obtained from the FerrDb database (http:// www. zhoun 
an. org/ ferrdb/), and differentially expressed ferroptosis 
regulators and markers between high- and low-immune 
score groups were analyzed. Then, ferroptosis regula-
tors and markers associated with ovarian cancer patients’ 
OS were identified using the univariate and multivari-
ate Cox regression analyses. Next, The TCGA-OV cases 
were randomly divided into a training set and a valida-
tion set. The LASSO-regularized linear Cox regression 
was employed to construct a risk model consisting of fer-
roptosis regulators and markers. The risk model’s prog-
nostic value was then validated using a time-dependent 
receiver-operating characteristic (ROC) curve analysis, 
multivariate Cox’s proportional hazard regression model 
analysis, and nomograms. The LASSO-regularized linear 
Cox regression was used to establish a ferroptosis regu-
lator- and markers-based risk model for ovarian cancer 
prognosis.

Materials and methods
Source data of OV from TCGA and GEO database
All data were collected from the Cancer Genome Atlas 
(TCGA) database (https:// tcga- data. nci. nih. gov/ tcga/), 
including gene expression profiles and clinical data of 
patients enrolled. The inclusion criteria of the present 
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study included: (1) Patients with complete gene expres-
sion profiles that could be applied to assess immune 
scores using the ESTIMATE algorithm; (2) patients with 
complete clinical data; and (3) patients with complete 
prognosis data. Then, a total of 378 cases of ovarian can-
cer patients with clinical information and expression pro-
file information were obtained from TCGA-OV database.

The microarray data have been deposited in NCBI’s 
Gene Expression Omnibus and are accessible through 
Gene Expression Omnibus (GEO; https:// www. ncbi. nlm. 
nih. gov/ geo/) Series accession number. Gene expres-
sion data have been archived as microarray datasets in 
GEO repository at the NCBI archives and are accessible 
through GEO Series accession number GSE63885. The 
GSE63885 dataset includes the gene expression profiles 
from 101 ovarian carcinoma specimens: 73 serous, 12 
endometrioid, 9 clear cells, and 7 undifferentiated.

Data processing
A total of 378 cases of ovarian carcinoma patients with 
clinical information and expression profile information 
were obtained from The Cancer Genome Atlas Ovarian 
Cancer (TCGA-OV). Each patient’s immune score was 
evaluated by the ESTIMATE algorithm [29]. According 
to this score and using the mean score as a cut-off, ovar-
ian cancer patients were assigned into high immune score 
(N = 185) and low immune score (N = 193) groups for 
Kaplan-Meier survival analysis. Subsequently, based on 
machine learning, these 378 patients with ovarian can-
cer were randomly divided into a training set (N = 189) 
and a validation set (N = 189). The clinical information is 
shown in Table 1.

Ferroptosis regulators and markers
A total of 259 ferroptosis regulators and markers were 
obtained from the FerrDb database (http:// www. zhoun 
an. org/ ferrdb/) [11], including 108 drivers, 69 suppres-
sors, and 111 markers. Based on patients’ expression pro-
files in high immune scores (N = 185) and low immune 
score (N = 193) groups, ferroptosis regulators and mark-
ers were applied for differentiation analysis (∣log2FC∣>1, 
P < 0.05), identifying differentially expressed ferroptosis 
regulators and markers.

Identification of prognostic signature
The LASSO-regularized linear Cox regression was imple-
mented using the sklearn library in Python for the Lasso 
regression model. For univariate and multivariate Cox 
regression analyses, we utilized the survival package in the 
R language. Based on 189 samples of ovarian cancer patients 
in the training set, the prognostic value of differentially 
expressed ferroptosis regulators and markers was evaluated 

by the multivariate Cox regression analyses identifying fer-
roptosis regulators and markers associated with ovarian can-
cer patients’ overall survival. Then, the coefficients of these 
ferroptosis regulators and markers linked to ovarian cancer 
patients’ overall survival were analyzed using the LASSO-
regularized linear Cox regression. The following formula 
was employed to calculate each patient’s risk score for prog-
nostic signature: risk score = expression of  gene1 × β1gene1 + 
expression of  gene2 × β2gene2 + expression of  gene3 × β3gene3 
[30, 31]. For the present study, the formula is: Risk_score 
= Exp(LAMP2)*-1.0014834743436096 + Exp(NOS2)* 
2.829059192228839 + Exp(ALOX5)*6.378912927866197 
+ Exp(CD44)*-2.464480478133204 + Exp(CHMP5)* 
-0.08451646841520694 + Exp(FH)*-8.973630741722427 
+ Exp(GOT1)*7.001890615921591 + Exp(DUOX2)* 
8.898412094886682 + Exp(SLC7A11)*-10.956246534207127 
+ Exp(DDIT3)*-6.697215501726477. A 10-ferroptosis-
related gene signature was obtained. The risk score for each 
patient in the training set, validation set, and independent 
dataset GSE63885 was calculated; patients in each data-
set were assigned into high- or low-risk score groups, and 
the prognostic value of the risk model was evaluated using 
Kaplan-Meier survival analysis.

Genomic‑clinicopathologic nomogram
The nomogram was constructed based on the LASSO-
regularized Cox regression model using the “survival” 
and “rms” package in the R language. The Consistency 
index (C index) was calculated using the survConcord-
ance function in “Survival” package in R language, which 
is the capability of the model to distinguish between 
patients who survived and those who did not. The perfor-
mance of the nomogram was evaluated using a bootstrap 
resampling approach with 1000 iterations to estimate the 
bias-corrected C-index. The bootstrap samples were gen-
erated by randomly sampling with replacement from the 
original dataset, using the same sample size as the origi-
nal. This process was repeated 1000 times to ensure the 
stability and reliability of the nomogram performance 
estimates. Then, the calibration curves for the probability 
of 1-, 3-. and 5-year overall survival (OS) showed satis-
factory agreement between predicted survival and actual 
observed survival.

Sample collection
Ovarian cancer samples were collected from 20 ovarian 
carcinoma patients in Affiliated Tumor Hospital, Xinji-
ang Medical University. The inclusion criteria for ovarian 
cancer patients comprise: (1) diagnosed as serous ovarian 
cancer by postoperative pathology; (2) > 18 years old; (3) 
received ovarian cancer resection; (4) no chemotherapy, 
radiation therapy, immunotherapy, and other therapies 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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prior to surgery; (5) no history of other malignancies or 
ovary-associated disorders. The normal ovarian tissue 
specimens were obtained from 10 cases who received 
myomectomy. All tissue samples were fixed in formalin 
until use. Written informed consent was obtained from 
all patients enrolled. Human tissue experiments were 
approved by the Ethics Committee of Affiliated Tumor 
Hospital, Xinjiang Medical University (approval ID: 

K-2021057). The clinicopathologic characteristics of 10 
low-grade (pathological grade G1-G2) and 10 high-grade 
(pathological grade G3) ovarian carcinoma patients were 
included in Table 7.

Immunohistochemistry (IHC)
The ovarian cancer tissue samples were embedded in 
paraffin. After deparaffinization and rehydration with 

Fig. 1 Ferroptosis regulator and marker-based risk model established using the Least Absolute Shrinkage and Selection Operator 
(LASSO)-regularized linear Cox regression. A A total of 378 patients were calculated for immune score by ESTIMATE algorithm and assigned 
into high- or low-immune score group; the association of immune score with the overall survival in patients with ovarian cancer was analyzed 
using a Kaplan-Meier estimate. B Ferroptosis regulators and markers based on FerrDb database (http:// www. zhoun an. org/ ferrdb/) were analyzed 
for differential expression in high- or low-immune score groups. C The coefficients of differentially expressed ferroptosis regulators and markers 
in TCGA-OV training set (n = 189) were calculated by multivariate Cox regression using LASSO-regularized linear Cox regression

http://www.zhounan.org/ferrdb/
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graded alcohols, slices were rinsed twice with PBS for 
10 min. Next, slices were incubated overnight with rab-
bit polyclonal primary antibody of CD1a (Cat# ab108309, 
1/1000, Abcam, Cambridge, MA, USA), CD4 (Cat# 
ab133616, 1/500, Abcam), CHMP5 (Cat# ab96273, 1/500, 
Abcam) and DDIT3 (Cat# ab11419, 1/100, Abcam), fol-
lowed by incubation at 37℃ for 30 min with 45µl second-
ary antibody horseradish peroxidase-conjugated goat 
polyclonal anti-rabbit  or mouse IgG H&L (HRP) (Cat# 
ab6721  and ab205719 1:1000, Abcam). After staining 
with 3, 3’-diaminobenzidine (DAB) for 3 min, slices were 
rinsed with water for 10 min. After counterstaining with 

Table 2 Differentially-expressed ferroptosis regulators in high- 
and low-immune score groups

Gene.symbol log2FC Regulation P.Value adj.P.Val

ZEB1 -1.303268835 Down 1.43E-13 1.70E-11

SAT1 1.040029699 Up 6.19E-10 3.67E-08

SQSTM1 1.052879177 Up 8.80E-09 3.13E-07

NQO1 1.152022282 Up 9.25E-09 3.13E-07

MYB 2.713284259 Up 1.39E-07 3.71E-06

CYBB 1.193947248 Up 1.41E-07 3.71E-06

FTH1 1.019080646 Up 7.74E-07 1.53E-05

ALOX5 1.265722731 Up 1.06E-06 1.89E-05

SOCS1 1.128552839 Up 2.04E-06 3.03E-05

NCF2 1.439163523 Up 2.39E-06 3.29E-05

RELA 1.025513027 Up 2.50E-06 3.29E-05

SCP2 1.041083389 Up 2.64E-06 3.30E-05

MUC1 1.055501129 Up 3.99E-06 4.50E-05

PML 1.066477531 Up 5.52E-06 5.95E-05

ZFP69B 8.44485485 Up 5.92E-06 6.10E-05

DPP4 -16.60461898 Down 9.07E-06 8.96E-05

ANGPTL7 1.121711507 Up 1.09E-05 1.03E-04

TAZ 1.096090796 Up 1.61E-05 1.41E-04

PCK2 1.135223683 Up 2.02E-05 1.65E-04

HSPB1 1.015436275 Up 2.12E-05 1.67E-04

CDKN2A 1.093951625 Up 4.88E-05 3.73E-04

PRDX1 1.014939856 Up 5.34E-05 3.96E-04

ATG3 1.047127674 Up 9.54E-05 6.46E-04

PHKG2 1.059605756 Up 1.07E-04 6.83E-04

CD44 1.112528197 Up 1.16E-04 7.25E-04

PTGS2 1.548795188 Up 2.18E-04 1.20E-03

CISD2 1.039490309 Up 3.23E-04 1.70E-03

STEAP3 1.127225037 Up 3.33E-04 1.72E-03

FH 1.024963136 Up 4.43E-04 2.11E-03

CHMP5 1.025211575 Up 4.48E-04 2.11E-03

MT1G 1.115455889 Up 4.50E-04 2.11E-03

DDIT3 1.026308285 Up 4.54E-04 2.11E-03

CDO1 1.673151129 Up 4.87E-04 2.22E-03

LINC00472 1.279821228 Up 5.01E-04 2.24E-03

AIFM2 1.147153689 Up 7.00E-04 3.07E-03

NOS2 1.067585893 Up 8.01E-04 3.45E-03

GCH1 1.170107442 Up 1.67E-03 6.81E-03

AKR1C1 1.16582017 Up 1.72E-03 6.91E-03

CISD1 1.038092873 Up 1.82E-03 7.06E-03

HERPUD1 1.024418643 Up 2.15E-03 7.96E-03

TFAP2C 1.063103058 Up 2.88E-03 1.02E-02

SLC7A11 -5.1864395 Down 3.31E-03 1.14E-02

GPX4 1.010620025 Up 4.05E-03 1.37E-02

CAPG 1.017779794 Up 4.61E-03 1.53E-02

LAMP2 1.019202163 Up 4.64E-03 1.53E-02

TNFAIP3 1.031849711 Up 5.24E-03 1.70E-02

NOX4 3.306540785 Up 7.09E-03 2.24E-02

GABARAPL2 1.033479799 Up 7.56E-03 2.36E-02

AKR1C2 1.248168752 Up 7.84E-03 2.41E-02

Table 2 (continued)

Gene.symbol log2FC Regulation P.Value adj.P.Val

HMOX1 1.08061761 Up 9.33E-03 2.78E-02

TXNIP 1.037383732 Up 9.40E-03 2.78E-02

PEBP1 1.013710687 Up 1.02E-02 2.95E-02

MAPK3 1.016838332 Up 1.37E-02 3.68E-02

IL6 1.802622241 Up 1.56E-02 4.14E-02

ATP6V1G2 1.487442492 Up 2.32E-02 5.92E-02

DUOX2 1.176234804 Up 2.33E-02 5.92E-02

PROM2 1.09987205 Up 2.45E-02 6.11E-02

YY1AP1 1.026722519 Up 2.50E-02 6.18E-02

UBC 1.009911407 Up 2.65E-02 6.40E-02

BID 1.033659428 Up 2.96E-02 7.01E-02

ATG7 1.08770804 Up 3.66E-02 8.43E-02

TF 1.149335695 Up 4.00E-02 9.11E-02

GOT1 1.024804256 Up 4.12E-02 9.21E-02

STAT3 1.011819434 Up 4.64E-02 1.02E-01

Table 3 Ferroptosis regulators associated with ovarian cancer 
patients’ overall survival

Gene coef exp(coef) se(coef) z p

FH -1.633849 0.195177 0.35938 -4.546 5.46E-06

CD44 -0.962617 0.381892 0.231665 -4.155 3.25E-05

SLC7A11 -0.81054 0.444618 0.212607 -3.812 1.38E-04

ANGPTL7 -6.126365 0.002185 1.96875 -3.112 1.86E-03

TAZ -0.999228 0.368164 0.346508 -2.884 3.93E-03

DUOX2 1.656473 5.240794 0.578878 2.862 4.22E-03

GABARAPL2 0.912891 2.491515 0.335007 2.725 6.43E-03

NOS2 1.787064 5.971895 0.707606 2.526 1.16E-02

LAMP2 -0.70243 0.49538 0.291433 -2.41 1.59E-02

ALOX5 0.604862 1.830999 0.255935 2.363 1.81E-02

CHMP5 -0.736627 0.478726 0.322767 -2.282 2.25E-02

ZEB1 0.744825 2.106073 0.326816 2.279 2.27E-02

GOT1 0.70303 2.019863 0.317499 2.214 2.68E-02

DDIT3 -0.572935 0.563868 0.263155 -2.177 2.95E-02

PHKG2 0.941572 2.56401 0.473549 1.988 4.68E-02
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hematoxylin, slices were rinsed with water for 10  min, 
and then dehydrated and cleared. Lastly, a light micro-
scope was employed to observe and photograph slices. 
IHC score was calculated by photographing at least 5 
random fields of each specimen. We employed a com-
bined score system based on both intensity and extent for 
calculating the IHC score. 1) Staining intensity is graded 
as 0, 1, 2, or 3 (for negative, weak, moderate, and strong). 
2) The percentage of positive cells is scored as follows: 0, 
< 5%; 1, 6–25%; 2, 26–50%; 3, 51–75%; and 4, > 76%. The 
final IHC score is the product of two indicators.

Statistical analyses
All statistical analysis uses Python (version 3.7.5; https:// 
www. python. org/) and R language (version 4.0.2; https:// 

www.r- proje ct. org/). P < 0.05 is considered statistically 
significant. Delete the missing clinical data from the list; 
delete the entire sample from the analysis if the value of 
any parameter is missing. OS is defined as the time inter-
val between the date of the first patient visit and the date 

Fig. 2 The prognostic value of the risk score model. A Risk scores of cases in TCGA-OV (training set, N = 189) were calculated using the formula 
described in the M&M section. Cases were divided into two groups using the median value of the risk score as a cut-off; the correlation 
of the subjects’ overall survival with risk score was analyzed. B Risk scores of cases in TCGA-OV (validation set, N = 189) were calculated using 
formula described in the M&M section. Cases were divided into two groups using the median value of the risk score as a cut-off; the correlation 
of the subjects’ overall survival with risk score was analyzed. C Risk scores of cases in TCGA-OV (all subjects, N = 378) were calculated using 
formula described in the M&M section. Cases were divided into two groups using the median value of the risk score as a cut-off; the correlation 
of the subjects’ overall survival with risk score was analyzed. D Risk scores of cases in GSE63885 were calculated using formula described in the M&M 
section. Cases were divided into two groups using the median value of the risk score as a cut-off; the correlation of the subjects’ overall survival 
with risk score was analyzed. E Receiver operating characteristic (ROC) curves showed the predictive efficiency of the risk score model in 1-, 3-, 5-, 
8-, or 10-year overall survival based on cases from TCGA-OV. F ROC curves showed the predictive efficiency of the risk score model in 1-, 2-, 3-, 4-, 
or 5-year overall survival based on cases from GSE63885

Table 4 Cox risk regression analysis on the correlation between 
the overall survival of ovarian cancer patients and clinical features

Univariate Multivariate

HR(95%CI) p.value HR(95%CI) p.value

Age 1(1–1) 5.20E‑04 1.02(1.01–1.04) 4.35E‑04
Stage 0.47(0.21–1.1) 6.70E-02 0.49(0.22–1.10) 8.36E-02

Risk_score 1(1–1) 6.30E‑07 1.03(1.02–1.04) 5.93E‑07

https://www.python.org/
https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/
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of death. The mean value comparison of continuous var-
iables uses a two-sided t-test. Kaplan-Meier method was 
used for survival analysis of high-risk group and low-risk 
group using a two-sided log-rank test in Python. The 
log-rank test, a non-parametric test used to compare the 
survival distributions of two groups, was employed to 
assess the significance between high and low-risk groups 
in the Kaplan-Meier survival analysis. This test is par-
ticularly suited for censored data and is widely used in 
survival analysis to test the null hypothesis that there is 
no difference in survival between the groups being com-
pared. Patients with risk scores above the median were 
classified into the high-risk group, whereas those with 
scores below the median were classified into the low-risk 
group. We conducted two-sided t-tests for the hypoth-
esis testing of 259 comparisons. This choice was made to 
account for the possibility of both positive and negative 
effects. FDR correction was performed with a cut-off 
value of 0.05 [32].

Results
Ferroptosis regulator and marker‑based risk model 
established using the LASSO‑regularized linear Cox 
regression
First, a total of 378 ovarian cancer subjects with clini-
cal information and expression profile information from 
TCGA-OV were calculated for immune score with ESTI-
MATE algorithm and assigned into high- or low-immune 
score group (Table  1) using the mean immune score as 
the cut-off; a Kaplan-Meier estimate was employed 
to analyze the correlation between immune score and 
ovarian carcinoma patients’ OS. As shown by Fig.  1A, 
patients from the high-immune score group exhibited an 
obviously better prognosis.

 Then, the list of the ferroptosis-related regulators and 
markers was retrieved from the FerrDb database (http:// 
www. zhoun an. org/ ferrdb/). A total of 259 ferroptosis-
associated regulators and markers were analyzed for dif-
ferential expression in the high- or low-immune score 
group and 64 were found with significant differences 

Fig. 3 Cox multivariate analyses of clinicopathological variables. A The multivariate Cox regression analyzing the association between ovarian 
cancer patients’ overall survival and age, stage, and risk score based on TCGA-OV data. B Patients from TCGA-OV were assigned into high-risk 
or low-risk group and the immune scores were shown

http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
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(|log2FC|> 1, P < 0.05) (Fig.  1B; Table  2). Based on 189 
ovarian cancer samples in the training set, the prognos-
tic value of 64 ferroptosis-related regulators and markers 
was evaluated by multivariate risk regression analysis, 
and 15 of them showed to be remarkably linked to ovar-
ian carcinoma patients’ OS (P < 0.05) (Table 3).

Subsequently, 378 ovarian cancer patients from TCGA-
OV were randomly separated into a training set (N = 189) 
and a validation set (N = 189) (Table 1). For predicting the 
clinical outcome of these ferroptosis-related regulators 
and markers, a LASSO-regularized linear Cox regression 
analysis was carried out to establish the risk score model 
based on 189 samples from the training set. According to 
the minimum criteria, a 10-gene risk signature was estab-
lished (Fig. 1C). The 10 ferroptosis-related regulators and 

markers are: LAMP2, NOS2, ALOX5, CD44, CHMP5, 
FH, GOT1, DUOX2, SLC7A11, and DDIT3.

The prognostic value of the risk score model
According to the regression coefficient, the risk score 
for each subject in the training set, validation set, and 
independent dataset GSE63885 was calculated with 
the aforementioned formula. Subjects in each data-
set were then assigned into high- and low-risk score 
groups based on the median score in each group. In the 
TCGA-OV training set (Fig. 2A), TCGA-OV validation 
set (Fig.  2B) and TCGA-OV entire set (Fig.  2C), and 
independent dataset GSE63885 (Fig.  2D), the subjects 
with lower risk scores obtained better overall survival. 
For further confirming the prognostic value of the risk 

Fig. 4 Nomogram analysis based on TCGA-OV. A Nomogram composed of age, stage, and risk score for the prediction of 1-, 3-, and 5-years survival 
probability. B-D Calibration plot for the evaluation of the nomogram in predicting 1-year, 3-years, and 5-years overall survival
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score model, receiver operating characteristic (ROC) 
curves [33] were drawn, and the predictive efficiency of 
the risk score model in 1-, 3-, 5-, 8-, or 10-year overall 
survival based on cases from TCGA-OV was shown. As 
shown by Fig. 2E. the area under the curves (AUC) for 
OS from TCGA-OV were 0.63 (1 year), 0.61 (3 year), 
0.68 (5 year), 0.66 (8 year), and 0.64 (10 year). Simi-
larly, ROC curves showed the predictive efficiency of 
the risk score model in 1-, 2-, 3-, 4-, or 5-year overall 
survival based on cases from GSE63885. As shown by 
Fig.  2F, the AUC for OS from GSE63885 were 0.72 (1 
year), 0.58 (2 year), 0.63 (3 year), 0.71 (4 year), and 0.80 
(5 year). As revealed by the ROC curve, the risk score-
based curve showed satisfactory predictive efficiency.

Univariate and multivariate Cox analyses 
of clinicopathological variables
Next, the clinical characteristics in TCGA-OV patients 
were analyzed using a univariate and multivariate Cox’s 

proportional hazard regression model (Table  4). Risk 
scores were considerably correlated with OS in OA 
patients. Also, Fig. 3A showed that according to TCGA-
OV data, age (P < 0.001, HR = 1.023; 95% CI = 1.010–
1.04) and the risk score (P < 0.001, HR = 1.029; 95% 
CI = 1.017–1.04) could predict patients’ OS. Moreover, 
patients from TCGA-OV were assigned into high-risk 
score or low-risk score group and the immune scores 
were shown. Figure  3B showed that patients in the 
high-risk score group obtained lower immune scores.

For validating the prognostic value of the risk score 
model, a Nomogram analysis was performed based 
on TCGA-OV. Figure  4A-D showed that based on the 
cases with prognostic information from TCGA-OV, a 
prognostic nomogram predicting the 1-, 3-, and 5-year 
survival probability was established, respectively. The 
nomogram included age, stage, and the risk score. The 
C-index of the risk score was 0.65, suggesting a favora-
ble prognosis of the model.

Fig. 5 Gene Ontology (GO) analysis on the 10 ferroptosis regulators and markers
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Gene Ontology (GO) analysis on the 10 ferroptosis 
regulators and markers
For an in-depth understanding of the 10 genes form-
ing the risk model, GO analysis was conducted. Metas-
cape online tool (https:// metas cape. org) [34] confirmed 
again the involvement of these 10 genes in ferroptosis 
such as cell metabolism, oxidation-reduction reactions, 
and oxidative stress, as well as immune activities such as 
leukocyte activation, granulocyte activation, and neutro-
phil-mediated immunity (Fig. 5; Table 5).

Since the GO analysis confirmed again that these 10 
genes were enriched in ferroptosis biological activities 
and immune activities, next, the association of 10 risk 
factors with immune cells was analyzed in ovarian can-
cer. Through TIMER online analysis, the association of 
immune cells with ovarian cancer patients’ cumulative 
survival was analyzed using a Kaplan-Meier estimate; 
Fig. 6A showed that patients with higher dendritic cell or 
CD4 + T cell obtained better cumulative survival. Simi-
larly, patients with higher DDIT3 or CHMP5 obtained 
better cumulative survival (Fig. 6B). Pearson correlation 
coefficient analysis was performed to analyze the correla-
tion between immune cells and the risk factors; Fig. 6C; 
Table 6 showed that risk factors and immune cells were 
significantly correlated.

Expression of immune microenvironment and ferroptosis 
markers in ovarian cancer and its relationship 
with prognosis of ovarian cancer patients
To validate the bioinformatics analysis results, IHC stain-
ing was applied to investigate the expression of immune 
microenvironment markers (dendritic cell CD CD1α, 
CD4 T cell, CD4) and ferroptosis markers (CHMP5 and 
DDIT3) in normal ovarian tissues and low- or high-grade 
ovarian cancer tissues (Fig.  7). As showed in Fig.  7A-B, 
compared to normal ovarian tissues, CD1α and CD4 pro-
tein was markedly low-expressed in low- or high-grade 
ovarian cancer tissues; and CD1α was even lower in 
high-grade ovarian cancer tissues. For ferroptosis mark-
ers (CHMP5 and DDIT3), CHMP5 (Fig. 7C) and DDIT3 
(Fig.  7D) protein expressions were notably down-regu-
lated in high-grade ovarian cancer tissues. The clinico-
pathologic characteristics of clinical samples were shown 
in Table 7.

Discussion
Herein, subjects from TCGA-OV were calculated for 
immune scores using the ESTIMATE algorithm and 
assigned into high- (N = 185) or low-immune (N = 193) 
score group; 259 ferroptosis regulators and markers 
were analyzed for expression and 64 were significantly 

Table 5 Gene ontology functional enrichment annotation

Term Pathway Pvalue Count GeneRatio

GO:0006520 cellular amino acid metabolic process 2.43E-04 3 0.01

GO:0043648 dicarboxylic acid metabolic process 4.69E-06 3 0.03

GO:0055114 oxidation-reduction process 6.54E-04 3 0.01

GO:0072593 reactive oxygen species metabolic process 1.14E-04 3 0.01

GO:0010817 regulation of hormone levels 7.55E-04 3 0.01

GO:0051223 regulation of protein transport 7.07E-04 3 0.01

GO:0080135 regulation of cellular response to stress 9.79E-05 4 0.01

GO:0006979 response to oxidative stress 4.52E-04 3 0.01

GO:0009611 response to wounding 7.12E-05 4 0.01

GO:0042060 wound healing 3.56E-05 4 0.01

GO:0044282 small molecule catabolic process 4.72E-04 3 0.01

GO:0072594 establishment of protein localization to organelle 8.35E-04 3 0.01

GO:0001817 regulation of cytokine production 2.33E-03 3 0

GO:0071216 cellular response to biotic stimulus 6.45E-05 3 0.01

GO:0002263 cell activation involved in immune response 1.78E-03 3 0

GO:0036230 granulocyte activation 6.32E-04 3 0.01

GO:0002366 leukocyte activation involved in immune response 1.75E-03 3 0

GO:0002444 myeloid leukocyte mediated immunity 8.13E-04 3 0.01

GO:0002446 neutrophil mediated immunity 6.10E-04 3 0.01

GO:0045055 regulated exocytosis 2.20E-03 3 0

https://metascape.org
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differentially expressed between two groups. These 64 
differentially expressed genes were applied for LASSO-
regularized linear Cox regression for establishing fer-
roptosis regulators- and markers-based risk model, and 
a 10-gene signature was established. The ROC curve 
indicated that the risk score-based curve showed sat-
isfactory predictive efficiency. Based on univariate and 

multivariate Cox risk regression analyses, age, and risk 
score were risk factors for ovarian cancer patients’ OS; 
patients in the high-risk score group obtained lower 
immune scores. The Nomogram analysis indicated that 
the prognostic outcomes of the model were consistent 
with the actual outcomes. GO functional enrichment 
annotation confirmed again the involvement of these 

Fig. 6 Association of 10 risk factors with immune cells in ovarian cancer. A The association of immune cells with ovarian cancer patients’ 
cumulative survival was analyzed using a Kaplan-Meier estimate. B The association of each of the 10 risk factors with ovarian cancer patients’ 
cumulative survival was analyzed using a Kaplan-Meier estimate. C The correlation between immune cells and the risk factors was analyzed using 
Pearson correlation coefficient. The left panel: heatmap showing the significance of the correlations (P-value); the right panel: heatmap showing 
the strength and direction of the correlations (R-value)
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10 genes in ferroptosis and immune activities. Pear-
son’s correlation analysis showed that risk factors and 
immune cells were significantly correlated.

A growing body of data suggests that innate and adap-
tive immune systems play a critical role in the occurrence 
and progression of malignancies [35–37]. Furthermore, 
cancer immunotherapy has progressed so rapidly that 
immune-based ovarian cancer prognostic signatures 
might provide potential value for identifying new molec-
ular targets [38]. By using the ESTIMATE algorithm, 
cases from TCGA-OV were calculated for immune 
scores and assigned into high- and low-immune score 
groups, and a Kaplan-Meier estimate then indicated 
that patients with higher immune scores obtained bet-
ter overall survival, suggesting the prognostic value of 
the immune score. Given the crucial role of ferroptosis in 
ovarian cancer [39], 259 ferroptosis regulators and mark-
ers were obtained from the FerrDb database (http:// www. 
zhoun an. org/ ferrdb/) [11] and differentially expressed 
ferroptosis regulators and markers between the immune 
score high group and low group were evaluated. Between 
the two groups, a total of 64 ferroptosis regulators and 
markers were differentially expressed, suggesting those 
ferroptosis-related genes are associated with the level of 
infiltrating of stromal and immune cells in ovarian cancer 
and might consist of a signature for ovarian cancer prog-
nosis. Consistent with the hypothesis, interferon-γ has 
been reported to induce ferroptosis within tumor cells 
[40]. Moreover, the early ferroptotic cancer cells might 
significantly promote immune responses [41].

Exploiting ferroptosis inducers provides a potential 
therapeutic method for the treatment of ovarian cancer. 
Multiple conventional drugs might trigger ferroptosis in 
tumor cells, including Sulfasalazine, Artesunate, Temozo-
lomide, and Cisplatin [42]. Similarly, ferroptosis suppres-
sors represent promising therapeutic targets for treating 
ovarian cancer. A combination of Ferroptosis inducers 
combined with chemotherapeutic agents gains a remark-
able synergistic effect on their anti-tumor activity [43]. 
In the present study, 15 of the 64 ferroptosis regulators 
and markers were considerably correlated with ovarian 
carcinoma patients’ OS. Furthermore, the LASSO-regu-
larized linear Cox regression established a 10-gene risk 
model predicting ovarian cancer prognosis, consisting 
of LAMP2, NOS2, ALOX5, CD44, CHMP5, FH, GOT1, 
DUOX2, SLC7A11, and DDIT3, all of which could play 
a role in ovarian cancer development. For instance, car-
damonin inhibited the mTOR lysosomal colocalization 
LAMP2, a well-known protein found in the membrane 
of lysosomes, decreasing Raptor siRNA SKOV3 cell pro-
liferation [44]. NOS2 has initially been reported to play 
a significant anti-tumor role in the immune response; 
however, growing evidence has demonstrated that the 
expression level of NOS2 in tumor cells is usually asso-
ciated with impaired prognosis [45]. Inherited variation 
in ALOX5 seems to affect ovarian cancer risk [46]. Exo-
somal CD44 has been reported to enhance the capacity 
of ovarian cancer cells to invade via CD44 transfer to the 
peritoneal mesothelium [47]. GOT1 modulates cellular 
metabolism by coordinating the use of carbohydrates 

Table 6 Association of 10 risk factors with immune cells in ovarian cancer

* p < 0.05, ** p < 0.01, *** p < 0.005

coef HR 95%CI_l 95%CI_u p.value sig

B_cell 1.481 4.398 0.001 1.78E + 04 0.727

CD8_Tcell -4.513 0.011 0 2.35E + 00 0.099 ·

CD4_Tcell -17.009 0 0 1.00E-03 0.001 **
Macrophage 10.09 24095.888 4.037 1.44E + 08 0.023 *
Neutrophil 13.885 1071683.28 4.104 2.80E + 11 0.029 *
Dendritic -0.558 0.573 0 7.47E + 02 0.879

LAMP2 0.36 1.434 1.064 1.93E + 00 0.018 *
NOS2 -0.027 0.974 0.456 2.08E + 00 0.945

ALOX5 0.051 1.052 0.872 1.27E + 00 0.595

CD44 -0.208 0.812 0.662 9.97E-01 0.047 *
CHMP5 -0.262 0.769 0.581 1.02E + 00 0.067 ·

FH -0.697 0.498 0.365 6.80E-01 0 ***
GOT1 0.447 1.563 1.2 2.04E + 00 0.001 **
DUOX2 0.28 1.323 0.92 1.90E + 00 0.131

SLC7A11 -0.092 0.912 0.758 1.10E + 00 0.327

DDIT3 -0.45 0.637 0.5 8.13E-01 0 ***

http://www.zhounan.org/ferrdb/
http://www.zhounan.org/ferrdb/
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and amino acids to satisfy dietary needs for long-term 
proliferation; in ovarian cancer, adapalene suppresses the 
growth of ovarian cancer cells by binding to GOT1 [48]. 
PARP pharmacologic inhibition represents a major factor 
in treating ovarian cancer with mutations in the BRCA; 
inhibition of PARP enhances ferroptosis through sup-
pressing SLC7A11 and synergizes with ferroptosis induc-
ers within BRCA-proficient ovarian cancer [49].

By grouping TCGA-OV training set and validation 
set and GSE63885 samples into 2 sub-groups with the 
median value of risk score as a cut-off, the Kaplan-
Meier survival estimate indicated that the risk score 
was strongly associated with the overall survival of 
patients, the ROC curve demonstrated that the risk 
score-based curve showed satisfactory prediction effi-
ciency, and the multivariate Cox’s proportional haz-
ard regression analysis identified the risk score as an 

independent risk factor. More importantly, the intui-
tive and effective nomogram integrating age, stage, and 
risk model was established, and it could be used to pre-
dict the outcomes of patients quickly. Through TIMER 
online analysis and Kaplan-Meier analysis, patients 
with higher levels of dendritic cell, CD4 + T cell, 
DDIT3, and CHMP5 were associated with better cumu-
lative survival. The clinical samples also confirmed 
that the levels of immune microenvironment markers 
(CD1α and CD4) and ferroptosis markers (CHMP5 and 
DDIT3) were lower in high-grade ovarian cancer tis-
sues. These mRNAs might be used as therapeutic tar-
gets in treating ovarian cancer.

Regarding the limits associated with this research, firstly, 
the biological effect of the 10 identified genes should be 
verified by in  vitro and in  vivo experiments; consider-
ing the 10 genes were ferroptosis regulators and markers 

Fig. 7 Expression of immune microenvironment markers (dendritic cell CD CD1α, CD4 T cell, CD4) and ferroptosis markers (CHMP5 and DDIT3) 
in ovarian cancer. IHC staining was applied to investigate the expression of CD1α (A), CD4 (B), CHMP5 (C) and DDIT3 (D) in normal ovarian tissues 
and low- or high-grade ovarian cancer tissues. **P < 0.01, ***P < 0.001 compared to normal ovarian tissues; #P < 0.05, ###P < 0.001 compared to low 
ovarian cancer tissues
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differentially expressed between the high-immune score 
group and low-immune score group, their functions upon 
ovarian cancer cell immune response and ferroptosis 
should be investigated in detail. Secondly, the risk score 
model needs to be further validated in several cohorts and 
large-size samples to assess the model’s generalizability.

Taken together, it is believed that the risk model based 
on 10 ferroptosis regulators and markers has a good 
prognostic value for ovarian cancer patients. It is worth 
noting that the risk score can also significantly distin-
guish ovarian cancer from normal samples, which may 
have a certain auxiliary value for early clinical screening 
of ovarian cancer.
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