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Abstract
Background c-MYC and BCL2 positivity are important prognostic factors for diffuse large B-cell lymphoma. However, 
manual quantification is subject to significant intra- and inter-observer variability. We developed an automated 
method for quantification in whole-slide images of tissue sections where manual quantification requires evaluating 
large areas of tissue with possibly heterogeneous staining. We train this method using annotations of tumor positivity 
in smaller tissue microarray cores where expression and staining are more homogeneous and then translate this 
model to whole-slide images.

Methods Our method applies a technique called attention-based multiple instance learning to regress the 
proportion of c-MYC-positive and BCL2-positive tumor cells from pathologist-scored tissue microarray cores. This 
technique does not require annotation of individual cell nuclei and is trained instead on core-level annotations of 
percent tumor positivity. We translate this model to scoring of whole-slide images by tessellating the slide into smaller 
core-sized tissue regions and calculating an aggregate score. Our method was trained on a public tissue microarray 
dataset from Stanford and applied to whole-slide images from a geographically diverse multi-center cohort produced 
by the Lymphoma Epidemiology of Outcomes study.

Results In tissue microarrays, the automated method had Pearson correlations of 0.843 and 0.919 with pathologist 
scores for c-MYC and BCL2, respectively. When utilizing standard clinical thresholds, the sensitivity/specificity of our 
method was 0.743 / 0.963 for c-MYC and 0.938 / 0.951 for BCL2. For double-expressors, sensitivity and specificity 
were 0.720 and 0.974. When translated to the external WSI dataset scored by two pathologists, Pearson correlation 
was 0.753 & 0.883 for c-MYC and 0.749 & 0.765 for BCL2, and sensitivity/specificity was 0.857/0.991 & 0.706/0.930 
for c-MYC, 0.856/0.719 & 0.855/0.690 for BCL2, and 0.890/1.00 & 0.598/0.952 for double-expressors. Survival analysis 
demonstrates that for progression-free survival, model-predicted TMA scores significantly stratify double-expressors 
and non double-expressors (p = 0.0345), whereas pathologist scores do not (p = 0.128).
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 Background
Diffuse large B-cell lymphoma (DLBCL) is the most com-
mon subtype of non-Hodgkin lymphoma and accounts 
for around 40% of cases globally [1, 2]. In the United 
States alone, it has an estimated incidence of 24,500 
annually [3]. According to 2016 and 2022 guidelines, the 
WHO recognizes several novel histopathological features 
and prognostic factors for DLBCL, including cell-of-ori-
gin classification (germinal center vs. activated B-cell), 
CD5 expression, and quantification of c-MYC and BCL2 
expression in lymphoma cells as assessed by immunohis-
tochemistry, referred to as double expressor status [4–7]. 
However, manual quantification of c-MYC and BCL2 can 
be subjective and may show intra- and inter-observer 
variability [8–10].

Recent studies have sought to develop automated 
methods to quantify immunohistochemical (IHC) mark-
ers through deep learning [11]. One of the earliest large 
studies predicted IHC scores and the proportion of posi-
tive stain from whole-slide IHC images [12]. Methods 
involved mapping hematoxylin and eosin (H&E) tumor 
regions onto IHC using adjacent tissue sections, train-
ing supervised convolutional neural networks (CNNs) 
on IHC patches, then applying some scheme to com-
bine patch-level predictions. The best results achieved 
accuracies of around 90%. More recently, a similar study 
aimed to predict IHC scores from routine H&E whole-
slide images (WSIs) [13]. Methods in this study resulted 
in areas under the curve (AUC) ranging from 0.50 to 
0.84, similar to a previous study of ours [14]. Finally, one 
recent study utilized a commercially available software 
(Visiopharm) to detect positive and negative nuclei in 
c-MYC-stained whole slide images to predict the propor-
tion of positive cells and achieved a Pearson correlation 
of 0.86 [8].

These and similar studies fail to exploit the key advan-
tages of both tissue-imaging methods in the development 
of machine learning models for quantitative IHC. WSIs 
are more widely available but lead to greater inter- and 
intra- reader variability, given that pathologists must 
search for tumor-cell-rich areas on WSIs. This search 
process introduces variability, as pathologists may not 
select the same areas for analysis. Moreover, the pro-
cess of selection is time-consuming due to the large size 
of WSIs. This feature makes WSIs less ideal for generat-
ing training data. On the other hand, tissue microarrays 
(TMAs), composed of multiple patient tissue samples, 

generally display much smaller tissue areas per case com-
pared to most WSIs. This feature not only removes the 
variability in selecting an area for analysis (both in whole-
slide digital or glass-slide reading) but also reduces the 
time it takes to find the said area. Thus, TMAs reduce 
inter- and intra- reader variability such that scores gener-
ated by manual microscopy as ground truth may be more 
reliable [15]. However, TMAs, which are expensive and 
time-consuming to construct, are not routinely used in 
clinical laboratories. By combining both tissue-prepara-
tion methods, we may exploit their advantages while mit-
igating their shortcomings.

We present a model that predicts the proportion 
of positive cells in c-MYC- and BCL2-stained tis-
sue microarrays (TMAs). Unlike previous studies, our 
TMA-trained model can predict the proportion of posi-
tive tumor cells in c-MYC- and BCL2-stained WSIs. 
See Fig.  1 for an overview of the method. Because our 
method is trained on TMAs with limited and fixed search 
area, we expect the degree of inter-reader variability to be 
minimized. Thus, our method benefits from the accurate 
c-MYC and BCL2 scoring on TMAs. Furthermore, dur-
ing inference on WSIs, our method automatically detects 
positive cell-rich regions, thus reducing the error asso-
ciated with searching large WSIs. This novel strategy in 
our method achieves a high Pearson correlation on both 
TMAs and WSIs.

Methods
Datasets
For training we utilized the publicly available DLBCL-
Morph dataset from Stanford consisting of digitized 
images of 378 TMA cores of DLBCL stained for c-MYC 
and BCL2 [1]. TMA slides were scanned at 40x objective 
magnification (0.25 μm per pixel) on an Aperio AT2 scan-
ner (Leica Biosystems, Nussloch, Germany) in ScanScope 
Virtual Slide (SVS) format. Each TMA slide was prepared 
with a formalin-fixed, paraffin-embedded (FFPE) sec-
tion of tumors assembled in a grid. Within the microar-
ray each tumor is represented by a 0.6-mm core diameter 
sample in duplicate. Due to tissue-crush artifacts, some 
cores were removed from the study. The antibodies used 
for c-MYC and BCL2 were not disclosed in this study. 
In total, there were 173 patients with one or two cores 
each. Several pathologists determined the percentage of 
c-MYC- and BCL2-positive tumor cells in deciles that 
served as a continuous label for each patient case. Their 

Conclusions We conclude that proportion of positive stains can be regressed using attention-based multiple 
instance learning, that these models generalize well to whole slide images, and that our models can provide non-
inferior stratification of progression-free survival outcomes.
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names are not mentioned in the original paper [1]. Sup-
plementary Fig. 1 summarizes the characteristics and uti-
lization of this dataset.

For validation we utilized an external dataset consisting 
of 52 WSIs of DLBCL tissue sections stained for c-MYC 
and 56 WSI of DLBCL stained for BCL2. Two patholo-
gists (David Jaye and Andrew L. Feldman, herein referred 
as “pathologist 1” and “pathologist 2”, respectively) deter-
mined the percentage of positive tumor cells for both 
stains in the decile that served as a continuous label for 
each patient. This external dataset came from the LEO 
study [16] and represented cases accrued from eight geo-
graphically dispersed institutions – Emory University 
(Atlanta, GA, USA), Cornell University (New York City, 
NY, USA), Grady Memorial Hospital (Atlanta, GA, USA), 
Iowa University (Iowa City, IA, USA), Mayo Clinic (Roch-
ester, MN, USA), MD Anderson (Houston, TX, USA), 
University of Miami (Miami, FL, USA), and Washington 
University (St. Louis, MO, USA). The LEO dataset were 
also scanned on an Aperio AT2 scanner at 40X objective 
magnification (0.25 μm per pixel). These slides originate 
from the various labs of the LEO consortium and local 
hospitals in their vicinities. It is a real-world dataset that 
has considerable pre-analytic variability due to differ-
ences in tissue processing at the LEO partner sites. The 
LEO dataset can be accessed with permission at https://
leocohort.org/contact-leo/. Supplementary Fig.  1 sum-
marizes the characteristics and utilization of this dataset.

Only a subset of cases included imaging and c-MYC/
BCL2 scores for both stains. As a result, in order to assess 
model performance on double-expressors, some cases 
were excluded. This resulted in a cohort of 171 patients 
for TMAs and 51 patients for WSIs.

Attention-based multiple instance learning (AB-MIL) model
We applied an attention-based multiple instance learning 
(AB-MIL) [17] on patches with feature extracted using a 
ResNet50 model pre-trained using the ImageNet dataset. 
MIL is a machine learning paradigm where weak labels 
are assigned to collections of examples (called bags) 
rather than individual examples (called instances), like in 
conventional machine learning. MIL assumes that each 
instance has an implicit but unknown label. This presup-
poses that instances with certain labels are shared across 
all bags but that some bags possess some instances with 
different labels. Classification by MIL is therefore per-
formed at the bag level and not the single instance level 
like in supervised learning.

MIL relies on a method to aggregate the instances 
within a single bag. Though several methods exist, the 
attention-based pooling mechanism automatically learns 
to dynamically weight instances into a bag-level summary 
for calculating the regression [17]. For example, in our 
study a single TMA (bag), consists of many smaller image 
patches (instances). Feature are first extracted from each 
instance, forming instance embeddings. An attention 
weight is automatically computed for each embedded 
instance, and a weighted sum combines the instances into 
a core-level embedding. Regression is then performed on 
this core-level embedding. Figure 2a depicts this general 
process. In addition to equations (see Supplemental), we 
also pictorially depict the attention mechanism in Fig. 2b.

Patch-wise features were extracted using the first, sec-
ond, third, and fourth residual blocks of a pretrained 
ResNet50 and individually spatially averaged to yield 
256-, 512-, 1024-, and 2048- dimensional feature vectors 
for each 224 × 224 patch at 20x and 40x magnification, as 
in Fig. 2a. his emulates a popular process in the analysis 
of WSI by which each patch is represented by a feature 

Fig. 1 Overview of the proposed methodology. (a) AB-MIL is trained to predict c-MYC and BCL2 scores from TMAs. (b) Each WSI is decomposed into 
TMA-sized regions that are passed through the TMA-trained AB-MIL model. This generates a distribution of local WSI scores which are summarized using 
their median to predict the overall slide-level c-MYC or BCL2 score

 

https://leocohort.org/contact-leo/
https://leocohort.org/contact-leo/


Page 4 of 13Tavolara et al. Diagnostic Pathology           (2024) 19:17 

vector [18, 19]. A fully-connected layer was prepended to 
the gated attention network to serve as a feature extrac-
tor for embedded patches. Furthermore, the output layer 
was modified to accommodate for regression (i.e., a single 
output) as in our previous work [14, 20]. Code is available 
at https://github.com/cialab/tma_to_wsi.

Experimental approaches
We applied a ten-fold cross-validation with a split of 
90/10 for training and testing on our TMA dataset. Pre-
liminary experiments utilized other approaches (see Sup-
plemental Materials). Following model cross-validation, 

we applied the trained models to our external testing set 
of WSI (see next section).

Application to whole-slide images
Following experiments on TMAs, we utilized the mod-
els trained via our 10-fold cross-validation experi-
ments to apply to WSIs. 224 × 224 patches were tiled at 
20x magnification, and their features were extracted 
using the third residual block of ResNet50 as in TMAs. 
Coordinates of foreground patches were clustered 
using k-means clustering (see Fig.  3) to yield an aver-
age cluster size of 45 ± 7 patches with a range from 6 to 
80. This cluster size coincides with the average number 

Fig. 3 Coordinates in the WSI (left) are clustered to yield areas about the size of a TMA (right). A TMA with proportional size is given as an example on the 
top left of the WSI. Predictions are generated for each TMA-sized area then collapsed onto a single value using their median

 

Fig. 2 Overview of TMA processing and attention mechanism. (a) Each TMA is split up into small patches (instances). Each patch is passed through a pre-
trained ResNet50. In different experimental settings, different levels of features are extracted from each patch. The first, second, third, and fourth residual 
blocks of ResNet50 yield 256-, 512-, 1024-, and 2048- dimensional embeddings, respectively, after spatial averaging. Each progressive block corresponds 
to more complex features. Finally, an AB-MIL is trained on these embeddings to regress the TMA c-MYC or BCL2 score. (b) The gated attention mechanism 
passes each embedding through parallel layers of the network (V and U) and is activated by tanh and sigmoid activation functions, respectively. The 
resulting parallel activations are dot-multiplied and passed through a final fully connected layer (wT), which maps the vector into a single value, its raw 
attention weight. These raw weights are scaled via softmax to weight attention weights
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of non-overlapping patches obtained from TMAs in the 
previous step. K-means clustering based on coordinates 
was motivated by the fact that TMA-shaped regions (i.e., 
circles) extracted from WSIs would necessarily overlap. 
k-means clustering creates convex polygons which not 
only prevent this overlap but also approximate the shape 
of a circle. This resulted in several “mini-bags” for each 
WSI. These mini-bags were passed through respective 
pre-trained AB-MIL models to yield several predictions 
per WSI. The median of these predictions was taken to be 
the overall slide-level prediction.

Statistical analysis
We utilized a number of statistical methods to assess 
the performance of our model. To evaluate the relation-
ship between the predicted and actual c-MYC and BCL2 
scores, we calculated the Pearson correlation coefficient. 
We used this metric to assess the strength and direc-
tion of the linear relationship between the predicted 
and actual c-MYC and BCL2 scores. Since it is sensitive 
to outliers, we also calculated the intragroup correlation 
coefficients (ICC) to assess the consistency of the model’s 
and pathologist’s predictions. We used a two-way ran-
dom effects model with absolute agreement to calculate 
the ICC. We also calculated the sensitivity and specific-
ity. Sensitivity measures the proportion of true positives 
correctly identified by the model, while specificity mea-
sures the proportion of true negatives correctly identi-
fied by the model. We used these metrics to evaluate the 
model’s ability to correctly classify positive and negative 
cases. Clinical thresholds of > 40% and > 50% for c-MYC 
and BCL2 were used to convert model and pathologists 
scores into positive and negative predictions [21]. Sen-
sitivity and specificity for double-expressors was also 
computed using clinical thresholds. The Bland-Altman 
method was used to evaluate the agreement between the 

pathologist and model predictions. This method com-
pares the differences between the pathologist and model 
predictions to their mean value. We calculated the lim-
its of agreement as ± 1.96 standard deviations of the dif-
ferences. Finally, survival analysis was used to evaluate 
the model’s and pathologist 1 and pathologist 2 abilities 
to predict time-to-event outcomes. Outcomes included 
overall survival and progression-free survival for TMAs 
as well as event-free survival for WSIs. High and low 
risk groups were defined by double-expressors and non 
double-expressors. Log-rank tests to compare the sur-
vival curves of different groups. All statistical analysis 
were carried out in MATLAB 9.4 with the exception of 
survival analyses, which were carried out in Python 3.8.5 
with scikit-learn, pandas, numpy, scipy, and lifelines. 95% 
confidence intervals were computed for Pearson correla-
tion, ICCs, sensitivities, and specificities using 1000-fold 
bootstrap with replacement.

Results
Prediction on tissue microarrays
Table  1 reports the results for automated c-MYC and 
BCL2 scoring on TMAs. In our preliminary experiments, 
the highest correlation, sensitivity, and specificity were 
achieved when utilizing patches extracted at 20x mag-
nification and patch features extracted from the third 
residual block of ResNet50 (Supplementary Tables 1 and 
2). All subsequent results were derived utilizing these 
parameters. AB-MIL finds a balance between sensitiv-
ity and specificity for c-MYC and BCL2 scoring relative 
to average pooling and is also more accurate for classi-
fying double-expressors. Pearson correlation for c-MYC 
scoring is higher for AB-MIL, but for BCL2 scoring, 
average pooling higher. ICCs are similarly high for both 
c-MYC and BCL2 scoring on TMAs and are significant 
(p < 0.05). As with previously reported metrics, ICCs for 
attention pooling are higher than for average pooling 
(Supplementary Table 3). Wide confidence intervals for 
double-expressor sensitivity and specificity are likely due 
to the small number of double-expressors (n = 21). Bland-
Altman plots indicate high agreement between model-
generated scores and pathologist scores (Supplementary 
Fig.  2), with slight improvement from attention pool-
ing. Additional results combining various experimental 
approaches to predict double-expressors are reported in 
Supplementary Table 4.

Prediction on whole-slide images
Table  2 reports the Pearson correlation, sensitivity, and 
specificity between predicted c-MYC and BCL2 scores 
and pathologist 1 and pathologist 2 scores of WSIs. 
These results are based off attention-based TMA-trained 
models in Table  1. Overall, performance metrics for 
c-MYC remain relatively high, even slightly elevated. 

Table 1 Performance of AB-MIL c-MYC and BCL2 scoring as well 
as double-expressor performance on TMAs
Marker Method Pearson 

correlation
Sensitivity Specificity

c-MYC Baseline 0.842 
[0.781,0.892]

0.596 
[0.400,0.778]

0.993 
[0.978,1.00]

AB-MIL 0.862 
[0.797,0.907]

0.702 
[0.519,0.865]

0.966 
[0.933,0.993]

BCL2 Baseline 0.928 
[0.902,0.950]

0.862 
[0.784,0.928]

0.950 
[0.896,0.987]

AB-MIL 0.905 
[0.860,0.940]

0.885 
[0.819,0.946]

0.949 
[0.892,0.989]

Double-expres-
sor

Baseline - 0.44 
[0.200,0.684]

1.00 
[1.00,1.00]

AB-MIL - 0.711 
[0.500,0.887]

0.974 
[0.945,0.994]

Pearson correlation, sensitivity, and specificity are reported along with 95% 
confidence intervals in brackets. Average pooling is reported as a baseline 
comparison method
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The opposite is true for BCL2, where there is a decline 
in performance across all metrics. Like in Table  1, the 
wide confidence intervals for double-expressors are likely 
due to the small number of double-expressors available 
(n = 8). ICCs show similar performance for both c-MYC 
and BCL2 scoring and are significant (Supplementary 
Table 3). Bland-Altman plots indicate moderate agree-
ment between model-generated scores and pathologist 
scores, again with a decline relative to TMAs for BCL2 
(Supplementary Fig. 2).

Figure  4 depicts pathologist scores versus model pre-
diction scores for WSIs. Visually, there is a positive trend 
for both stains. However, there are several extreme outli-
ers for BCL2. For example, the model assigned as score of 
80 to a TMA scored 0 by pathologist 1.

Figure  5 depicts the distribution of predicted c-MYC 
scores from a few example slides. Distributions vary – 
some are bimodal, some are exponential, and some are 
normal. The varying distributions stem from the distribu-
tion of positive cells within WSIs; some areas are richer 

than others. However, it is in the areas that contain the 
highest density of cells that the overall slide-level label 
needs to be computed. This can be seen in Fig. 4, where 
it is clear that pathologist scores are near where the high-
est density of model-generated scores lies. The median 
seems to perform well, yet a summary statistic that cap-
tures this variation might improve results.

Additionally, we generated attention heatmaps of our 
model on WSIs. One would expect to see the model 
attending to tumor regions of the tissue and ignoring 
normal areas. Furthermore, the model should attend to 
tumor regions regardless of degree of positivity. We can 
see that this is indeed the case in the examples in Fig. 6.

Model scoring as a predictor for survival for double-
expressors
We performed additional analysis regarding the ability 
of model scores to predict survival for double-expres-
sors (Fig. 7). We observed that for overall survival, both 
pathologist 1 and pathologist 2 generated and model-
predicted TMA scores do not significantly stratify dou-
ble-expressors and non double-expressors in terms of 
overall survival (p = 0.265 and p = 0.107, respectively). 
However, for progression-free survival, model-predicted 
TMA scores do significantly stratify double-expressors 
and non double-expressors (p = 0.0345), whereas pathol-
ogist generated scores do not (p = 0.128). As for WSIs, 
both pathologist 1 and pathologist 2 generated and 
model-predicted TMA scores do not significantly stratify 
double-expressors and non double-expressors in terms of 
event-free survival (p = 0.318 and p = 0.603, respectively).

When examining multiple thresholds for c-MYC and 
BCL2, we observe that patients are significantly stratified 
in terms of outcome risk at many combinations of thresh-
olds (Fig. 8). In particular, we can see that for overall sur-
vival on TMAs, model-predicted scores stratify at more 
combinations of thresholds than pathologist scoring. 

Table 2 Results of WSI c-MYC and BCL2 scoring from models 
trained with TMA data
Stain Pearson 

correlation
Sensitivity Specificity

c-MYC 0.883 
[0.860,0.902]
0.753 
[0.696,0.800]

0.857 
[0.801,0.907]
0.706 
[0.638,0.771]

0.991 
[0.980,1.000]
0.930 
[0.902,0.956]

BCL2 0.749 
[0.703,0.790]
0.765 
[0.728,0.798]

0.856 
[0.820,0.891]
0.855 
[0.816,0.890]

0.719 
[0.654,0.779]
0.690 
[0.628,0.751]

Double-expressor - 0.890 
[0.636,1.000]
0.598 
[0.273,0.913]

1.000 
[1.000,1.000]
0.952 
[0.873,1.000]

Pathologist 1 and 2 are both used as references for Pearson correlation, 
sensitivity, and specificity metrics and are indicated by two respective metrics 
reported in each cell. Pearson correlation, sensitivity, and specificity are 
reported along with 95% confidence intervals in brackets

Fig. 4 Pathologists’ scores are plotted against model-generated scores for c-MYC and BCL2 WSIs. The vertical and horizontal dotted lines represent clini-
cal thresholds. Points in the top right and bottom left quadrant are true positives and true negatives, respectively. Likewise, points in the top left and 
bottom right are false positives and false negatives, respectively
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However, for progression-free survival on TMAs event-
free survival on WSIs, the opposite is observed.

Discussion
In our current study, we utilized AB-MIL to predict the 
positive staining of IHC markers in tumor cells using 
regression. Previously, we have employed a similar model 
to predict HER2 scores from both H&E and HER2 [14] 
as well as for c-MYC TMAs [22]. The results of our cur-
rent study report Pearson correlations for c-MYC and 
BCL2 that are comparable with similar studies predicting 
c-MYC-positivity [8].

Beyond simple application, we translate TMA-trained 
deep learning model to WSIs directly to predict IHC 
marker positivity. This serves as a proof of concept for 
c-MYC and BCL and other markers of interest, such as 
BCL6 in DLBCL. Additionally, we have also shown the 
potential of deriving WSI deep learning models from 
TMAs -- not just for IHC scoring. To the best of our 
knowledge, no other study has employed this approach 
before.

One advantage of the current study over similar stud-
ies [8] is that no manual threshold is required in order to 
segment positive and negative nuclei. It was reported in 

Fig. 6 Attention heatmaps for our model on c-MYC WSIs. The model attends to tumor regions regardless of degree of positivity and does not attend to 
normal regions

 

Fig. 5 Distribution of c-MYC (six left) and BCL2 (six right) predictions for all mini-bags within a single WSI. A broad range of TMAs are presented along 
with pathologists’ and model-generated scores
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Fig. 7 Survival curves for pathologist generated and model-predicted scores of TMAs and WSIs for double-expressors. Rows from top to bottom cor-
respond to overall survival, progression-free survival, and event-free survival for TMAs, TMAs, and WSIs, respectively. The left and center columns corre-
sponds to pathologist scoring, and the right column corresponds to model-generated scores. Overall, using standard clinical thresholds for c-MYC and 
BCL2, only one result is significant – model scoring for progression-free survival using TMAs
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Fig. 8 Log-rank analyses for pathologist generated and model-predicted scores of TMAs and WSIs using multiple c-MYC and BCL2. Each value represents 
the -log10(p-value) utilizing the specified thresholds for double-expressors. Any color indicates significance (i.e. >1.3). Rows and columns are arranged as 
in Fig. 7
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[8] that the commercially available software (Visiopharm) 
was initially utilized to segment tumor and non-tumor 
regions, background, areas of necrosis, and preparation 
artifacts. Then, a specific intensity threshold was selected 
to perform segmentation of positive and negative cells. 
Presumably, a stain separation was being performed in 
the background, and then a threshold was utilized for 
each stain channel to separate foreground from back-
ground. The proposed approach is not limited by the 
need for annotations as in Visiopharm. All that needs 
to be annotated is the overall c-MYC or BCL2 score for 
each TMA core or an equivalent sized region from a 
whole-slide image.

Moreover, the advantages of AB-MIL over traditional 
MIL approaches are clearly demonstrated throughout our 
results. One key advantage from an implementation per-
spective is the dynamic weighting offered by the method. 
Instead of pre-selecting a function (such as mean, max, 
or noisy-and [23]), AB-MIL can automatically learn 
a non-linear function to score importance of each 
instance, which then can be dynamically weighted into 
a slide-level feature representation in the same embed-
ding space as the original instances. This advantage can 
be clearly seen in performance results in Tables 1 and 2. 
As a by-product, attention weights allow the model to be 
interpretable such that areas receiving high attention cor-
respond to regions of the slide important to the overall 
slide-level label (in our case, c-MYC or BCL2 score). This 
clear advantage of interpretability can be seen in Fig. 6 – 
attended regions correspond to tumor regions. The util-
ity of AB-MIL has already proven and continues to prove 
itself in several WSI regression and classification tasks 
[18, 20, 22, 24–31] but is facing healthy competition from 
more recent self-supervised, self-attention, and contras-
tive learning approaches [19, 32–34].

This study can be improved in several ways. Firstly, 
there are several weakly-supervised methods (some even 
based on AB-MIL) that perform classification of WSIs 
[14, 18, 20, 24, 25, 31]. Most are based on the same AB-
MIL that we propose, but several methods utilize differ-
ent approaches [32, 35]. These latter methods could be 
easily modified for regression as in AB-MIL and improve 
overall performance to produce additional comparisons. 
Second, our dataset was highly skewed towards scores 
between 10% and 40% for c-MYC. In fact, for scores of 
70%, 80%, and 90%, there were only three, two, and three 
TMAs, respectively. Not only does this make it difficult 
to perform cross-validation (i.e., representation of each 
score in each training set), but it also biases the model 
to predict the most recurring values (i.e., those between 
10% and 40%). Some of these errors are shown in Figs. 4 
and 5. Thus, our method would benefit from additional 

data for these rare cases. Likewise, the number of double-
expressors is quite small, and our analyses would benefit 
from inclusion of additional double-expressor samples. 
Third is the extent of followup for clinical outcome data. 
In our analyses, we only had access of overall survival and 
progression-free survival for TMAs as well as event-free 
survival for WSIs. Many of our subjects have censored 
outcomes because most do not require clinical follow-up. 
Fourth, given the intra- and inter-observer variability [8] 
for determining c-MYC and BCL2 positivity, the subjec-
tive nature of these scores represents “label noise”. This 
could potentially be improved by multiple readings or 
perhaps an alternative method for ground truth genera-
tion (i.e., molecular methods). Nonetheless, strong algo-
rithms may emerge from noisy training labels [36]. Lastly, 
though the proposed algorithm can quantify positivity 
in both TMAs and WSIs as a whole, it cannot currently 
localize individual cells and classify their positivity. This 
would be a useful feature in clinical practice, as users 
would be able to verify why a certain count was made. 
However, such an approach requires training and valida-
tion with annotations of individual cell nuclei, thus nul-
lifying the advantages granted by weak supervision and 
working with slide-level or TMA-level labels.

Despite the high correlation between pathologist-
scored TMAs and model-scored TMAs, there are 
instances in which the AB-MIL model fails. Examples are 
shown in Fig.  9, along with accurately regressed scores. 
There are two TMAs for which the model predicted the 
same exact proportions of positive tumor cells as the 
pathologist – 30% and 70%, respectively. However, there 
are two examples in which the model was not accurate 
– predicting 42% when the pathologist scored 0%, and 
predicting 17% when the pathologist scored 50%. For 
the former, it may be the case that the positively stained 
cells are lymphoid and that the model may have confused 
them for positive tumor cells. For the latter, there is a 
clear, dense cluster of positive tumor cells in the upper 
part of the top core. Perhaps it is the non-uniformity with 
which positive cells are distributed that confused the 
model.

Figure  10 shows similar examples for WSIs. The top 
example depicts an accurately predicted WSI (patholo-
gist 1: 45, model: 43), while the bottom depicts an inac-
curately predicted WSI (pathologist 1: 65, model: 14). We 
can also see from grayscale images in Fig.  7 that depict 
scores for TMA-sized clusters. We automatically selected 
both the highest and lowest-scored clusters for each 
WSI. Clearly, the highest and lowest-scoring TMA-sized 
regions correspond to high and low cell positivity. Albeit 
not comprehensive, this suggests that the algorithm is 
able to detect the variation across each WSI.
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Conclusions
Here, we applied AB-MIL to predict the proportion of 
positive cells from c-MYC and BCL2 TMAs. Our method 
resulted in Pearson correlations of 0.8434 and 0.9188, 
respectively, depending on the cross-validation approach, 
along with a sensitivity and specificity of 0.7426 and 
0.9627 when utilizing a clinical threshold of 40% for 

c-MYC and 0.9378 and 0.9509 when utilizing a clinical 
threshold of 50% for BCL2. For double-expressors, our 
model achieved a sensitivity and specificity of 0.7200 and 
0.9736. We applied these trained models directly to WSIs 
and achieved a Pearson correlation of 0.8825 and 0.7485 
for c-MYC and BCL2, respectively, along with a sen-
sitivity and specificity of 0.8565 and 0.9911 for c-MYC, 
0.8562 and 0.7186 for BCL2, and 0.8903 and 1.0000 for 

Fig. 10 Examples of accurately (above) regressed and inaccurately (below) regressed WSIs. The grayscale images depict the scores given to each TMA-
sized cluster (black = low, white = high). On the right and left are the lowest and highest clusters for each WSI

 

Fig. 9 Examples of accurately regressed (left) and inaccurately (middle and right) regressed TMAs. The middle and right examples consisted of two TMAs 
with a single, unified score by the pathologist
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double-expressors. We also showed that for progression-
free survival, model-predicted TMA scores significantly 
stratify double-expressors and non double-expressors 
(p = 0.0345), whereas pathologist generated scores do 
not (p = 0.128). We conclude that proportion of positive 
stains can be regressed using attention-based multiple 
instance learning and that these models translate well to 
whole slide images. Furthermore, our model significantly 
differentiates double expressor in terms of progression-
free survival. Similar methods may be applied for the 
quantification of positive tumor cells. Although accurate, 
our method may be considered as a tool complementary 
to the pathologist’s workflow and may help in the reduc-
tion of pathologist’s workload. In future studies, we will 
evaluate the performance of our model on an external 
set of TMAs, other marker of interest (BCL6, CD10, and 
MUM1), and predict said markers directly from routine 
H&E. Finally, we would like to explore the predictive 
power of AB-MIL for other histological features of inter-
est, such as ratio of positive c-MYC and BCL2 cells to 
total tissue area as well as ratio to total cells.

Abbreviations
AB-MIL  Attention-based multiple instance learning
DLBCL  Diffuse large B-cell lymphoma
ICC  Intragroup correlation coefficients
IHC  Immunohistochemistry
LEO  Lymphoma epidemiology of outcomes
TMA  Tissue microarray
WSI  Whole-slide image

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s13000-023-01425-6.

Supplementary Material 1: Additional methods and results

Acknowledgements
We also thank the curators and authors of the DLBCL TMA dataset [1] as well 
as the Lymphoma Epidemiology of Outcome clinical trial for WSI data.

Author Contributions
Conceptualization, M.K.K.N., D.L.J., C.F., L.C. and M.N.G.; methodology, T.E.T., 
M.K.K.N., D.L.J., C.F., L.C. and M.N.G.; software, T.E.T. and L.C.; validation, D.L.J., 
C.F., L.C. and M.N.G.; formal analysis, T.E.T., M.K.K.N., D.L.J., C.F., L.C. and M.N.G.; 
investigation, T.E.T., M.K.K.N., D.L.J., C.F., L.C. and M.N.G.; resources, M.K.K.N., 
D.L.J., C.F., L.C., and M.N.G.; data curation, D.L.J., C.F., and L.C.; writing—original 
draft T.E.T.; writing—review and editing, T.E.T., M.K.K.N, D.L.J, C.F., L.C. and 
M.N.G.; visualization, T.E.T. and L.C.; supervision, M.K.K.N, D.L.J, C.F., L.C. 
and M.N.G.; project administration, M.K.K.N, C.F., L.C. and M.N.G.; funding 
acquisition, C.F., L.C. and M.N.G.

Funding
The project described was supported in part by U01 CA220401 (PIs: Cooper, 
Flowers, Gurcan), R01 LM013523 (PI: Cooper), R01 CA235673 (PI: Puduvalli), 
and R21 CA273665 (PI: Gurcan) from the National Cancer Institute, R01 
HL145411 (PI: Beamer) from National Heart Lung and Blood Institute, UL1 
TR001420 (PI: McClain) from National Center for Advancing Translational 
Sciences. The content is solely the responsibility of the authors and does 
not necessarily represent the official views of the National Cancer Institute, 
National Heart Lung and Blood Institute, National Center for Advancing 
Translational Sciences, or the National Institutes of Health. We also thank the 

curators and authors of the DLBCL TMA dataset [1] as well as the Lymphoma 
Epidemiology of Outcome clinical trial for WSI data.

Data Availability
TMAs are publicly accessible at https://wiki.cancerimagingarchive.net/pages/
viewpage.action?pageId=119702520. The WSI dataset are available from 
https://leocohort.org/contact-leo/ on reasonable request. Code will be made 
available at https://github.com/cialab/tma_to_wsi.

Declarations

Ethics approval and consent to participate
All participants in LEO consented to participation in the study. All aspects of 
the LEO study from tissue and data collection, to pathology review and image 
analysis were reviewed and approved by the Emory University Institutional 
Review Board (registration number 569), study number 00065989. Subject 
consent for the Stanford dataset was waived.

Consent for publication
Not applicable.

Competing interests
Lee Cooper participates in the Tempus Algorithm Advisors program.

Author details
1Center for Artificial Intelligence Research, Wake Forest University School 
of Medicine, Winston-Salem, NC, USA
2Present address: Department of Laboratory Medicine and Pathology, 
Mayo Clinic, Rochester, MN, USA
3Department of Pathology and Laboratory Medicine, Emory University 
School of Medicine, Atlanta, GA, USA
4Department of Lymphoma/Myeloma, The University of Texas MD 
Anderson Cancer Center, Houston, TX, USA
5Department of Pathology, Northwestern University Feinberg School of 
Medicine, Chicago, IL, USA

Received: 19 May 2023 / Accepted: 4 December 2023

References
1. Vrabac D, Smit A, Rojansky R, Natkunam Y, Advani RH, Ng AY, Fernandez-Pol 

S, Rajpurkar P. DLBCL-Morph: morphological features computed using deep 
learning for an annotated digital DLBCL image set. Sci Data. 2021;8:1–8.

2. Horvat M, Zadnik V, Južnič Šetina T, Boltežar L, Pahole Goličnik J, Novaković 
S. Jezeršek Novaković, B. diffuse large B-cell Lymphoma: 10 years’ real-world 
clinical experience with rituximab plus cyclophosphamide, doxorubicin, 
vincristine and prednisolone. Oncol Lett. 2018;15:3602–9.

3. Li Y, Wang Y, Wang Z, Yi D, Ma S. Racial differences in three major NHL sub-
types: descriptive epidemiology. Cancer Epidemiol. 2015;39:8–13.

4. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, Advani R, 
Ghielmini M, Salles GA, Zelenetz AD. The 2016 revision of the World Health 
Organization classification of lymphoid Neoplasms. Blood the Journal of the 
American Society of Hematology. 2016;127:2375–90.

5. Li S, Young KH, Medeiros LJ. Diffuse large B-cell Lymphoma. Pathology. 
2018;50:74–87.

6. Sehn LH, Salles G. Diffuse large B-cell Lymphoma. N Engl J Med. 
2021;384:842–58.

7. Li W. The 5th Edition of the World Health Organization Classification of Hema-
tolymphoid Tumors. Exon Publications 2022, 1–21.

8. Balakrishna J, Kulewsky J, Parwani A. A digital method to interpret the C-MYC 
stain in diffuse large B cell Lymphoma. J Pathol Inf 2022, 100100.

9. Kluk MJ, Ho C, Yu H, Chen BJ, Neuberg DS, Dal Cin P, Woda BA, Pinkus GS, 
Rodig SJ. MYC immunohistochemistry to identify MYC-driven B-cell Lympho-
mas in clinical practice. Am J Clin Pathol. 2016;145:166–79.

10. Mahmoud AZ, George TI, Czuchlewski DR, Zhang Q-Y, Wilson CS, Sever CE, 
Bakhirev AG, Zhang D, Steidler NL, Reichard KK. Scoring of MYC protein 
expression in diffuse large B-cell Lymphomas: concordance rate among 
hematopathologists. Mod Pathol. 2015;28:545–51.

https://doi.org/10.1186/s13000-023-01425-6
https://doi.org/10.1186/s13000-023-01425-6
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=119702520
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=119702520
https://leocohort.org/contact-leo/
https://github.com/cialab/tma_to_wsi


Page 13 of 13Tavolara et al. Diagnostic Pathology           (2024) 19:17 

11. Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN. Deep learn-
ing in cancer pathology: a new generation of clinical biomarkers. Br J Cancer. 
2021;124:686–96.

12. Qaiser T, Mukherjee A, Reddy Pb C, Munugoti SD, Tallam V, Pitkäaho T, 
Lehtimäki T, Naughton T, Berseth M, Pedraza A. Her 2 challenge contest: a 
detailed assessment of automated her 2 scoring algorithms in whole slide 
images of Breast cancer tissues. Histopathology. 2018;72:227–38.

13. Conde-Sousa E, Vale J, Feng M, Xu K, Wang Y, Della Mea V, La Barbera D, 
Montahaei E, Baghshah M, Turzynski A, et al. HEROHE Challenge: predicting 
HER2 status in breast cancer from hematoxylin&–eosin whole-slide imaging. 
J Imaging. 2022;8. https://doi.org/10.3390/jimaging8080213

14. Tavolara TE, Niazi MKK, Tozbikian G, Wesolowski R, Gurcan MN. Predicting 
HER2 scores from registered HER2 and H&E images. In Proceedings of the 
SPIE Medical Imaging, 2022, 2022; pp. 60–68.

15. Gavrielides MA, Conway C, O’Flaherty N, Gallas BD, Hewitt SM. Observer 
performance in the use of digital and optical microscopy for the interpreta-
tion of tissue-based biomarkers. Anal Cell Pathol. 2014;2014.

16. Flowers CR, Link BK, Nastoupil LJ, McDonnell TJ, Kahl BS, Vij KR, Casulo C, 
Friedberg JW, Burack R, Lossos IS. The Lymphoma Epidemiology of Outcomes 
(LEO) cohort study reflects the demographics and subtypes of patients 
diagnosed with non-hodgkin Lymphoma in the United States. Blood. 
2018;132:1702.

17. Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learn-
ing. In Proceedings of the PMLR, 2018, 2018; pp. 2127–2136.

18. Lu MY, Williamson DFK, Chen TY, Chen RJ, Barbieri M, Mahmood F. Data-
efficient and weakly supervised computational pathology on whole-slide 
images. Nat Biomedical Eng. 2021;5:555–70.

19. Chen RJ, Lu MY, Weng W-H, Chen TY, Williamson DFK, Manz T, Shady M, 
Mahmood F. Multimodal co-attention transformer for survival prediction 
in gigapixel whole slide images. In Proceedings of the Proceedings of 
the IEEE/CVF International Conference on Computer Vision, 2021, 2021; 
pp. 4015–4025.

20. Tavolara TE, Niazi MKK, Gower AC, Ginese M, Beamer G, Gurcan MN. Deep 
learning predicts gene expression as an intermediate data modality to iden-
tify susceptibility patterns in Mycobacterium tuberculosis infected Diversity 
Outbred mice. EBioMedicine. 2021;67:103388.

21. Johnson NA, Slack GW, Savage KJ, Connors JM, Ben-Neriah S, Rogic S, Scott 
DW, Tan KL, Steidl C, Sehn LH. Concurrent expression of MYC and BCL2 in dif-
fuse large B-cell Lymphoma treated with rituximab plus cyclophosphamide, 
doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30:3452.

22. Tavolara TE, Niazi MKK, Jaye D, Flowers C, Cooper L, Gurcan MN. Deep learn-
ing to predict the proportion of positive cells in CMYC-stained tissue microar-
rays of diffuse large B-cell lymphoma. In Proceedings of the SPIE Medical 
Imaging, 2023, 2023; pp. 12–16.

23. Wang X, Yan Y, Tang P, Bai X, Liu W. Revisiting multiple instance neural net-
works. Pattern Recogn. 2018;74:15–24.

24. Su Z, Tavolara TE, Carreno-Galeano G, Lee SJ, Gurcan MN, Niazi MKK. 
Attention2majority: weak multiple instance learning for regenerative kidney 
grading on whole slide images. Med Image Anal. 2022;79:102462.

25. Tavolara TE, Gurcan MN, Niazi MKK. Contrastive multiple Instance Learning: an 
unsupervised Framework for Learning Slide-Level representations of whole 
slide histopathology images without labels. Cancers. 2022;14:5778.

26. Su Z, Niazi MKK, Tavolara TE, Niu S, Tozbikian GH, Wesolowski R, Gurcan MN. 
BCR-Net: a deep learning framework to predict Breast cancer recurrence from 
histopathology images. PLoS ONE. 2023;18:e0283562.

27. Tavolara TE, Gurcan MN, Niazi MKK. The effects of sparsity induction methods 
on attention-based multiple instance learning applied to Camelyon16. In 
Proceedings of the SPIE Medical Imaging, 2023, 2023; pp. 149–154.

28. Tavolara TE, Chen W, Frankel WL, Gurcan MN, Niazi MKK. Minimizing the intra-
pathologist disagreement for tumor bud detection on H and E images using 
weakly supervised learning. In Proceedings of the SPIE Medical Imaging, 
2023, 2023; pp. 277–283.

29. Tavolara TE, Niazi MKK, Gurcan MN. Simple patch-wise transformations serve 
as a mechanism for slide-level augmentation for multiple instance learn-
ing applications. In Proceedings of the SPIE Medical Imaging, 2023, 2023; 
pp. 369–373.

30. Tavolara TE, Niazi MKK, Gurcan MN. Background detection affects down-
stream classification of Camelyon16 whole slide images. In Proceedings of 
the SPIE Medical Imaging, 2023, 2023; pp. 164–169.

31. Tavolara TE, Niazi MKK, Beamer G, Gurcan MN. Identifying lung imaging 
biomarkers of BCG vaccination after infection with Mycobacterium tubercu-
losis. In Proceedings of the Medical Imaging 2021: Digital Pathology, 2021; 
pp. 49–57.

32. Shao Z, Bian H, Chen Y, Wang Y, Zhang J, Ji X, Transmil. Transformer based 
correlated multiple instance learning for whole slide image classification. Adv 
Neural Inf Process Syst. 2021;34:2136–47.

33. Lu MY, Chen RJ, Wang J, Dillon D, Mahmood F. Semi-supervised histology 
classification using deep multiple instance learning and contrastive predic-
tive coding. arXiv preprint arXiv:1910.10825 2019.

34. Chen RJ, Chen C, Li Y, Chen TY, Trister AD, Krishnan RG, Mahmood F. Scaling 
vision transformers to gigapixel images via hierarchical self-supervised 
learning. In Proceedings of the Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2022, 2022; pp. 16144–16155.

35. Zhang H, Meng Y, Zhao Y, Qiao Y, Yang X, Coupland SE, Zheng Y. Dtfd-mil: 
Double-tier feature distillation multiple instance learning for histopathology 
whole slide image classification. In Proceedings of the Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 
2022; pp. 18802–18812.

36. Karimi D, Dou H, Warfield SK, Gholipour A. Deep learning with noisy labels: 
exploring techniques and remedies in medical image analysis. Med Image 
Anal. 2020;65:101759.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://doi.org/10.3390/jimaging8080213

	Translating prognostic quantification of c-MYC and BCL2 from tissue microarrays to whole slide images in diffuse large B-cell lymphoma using deep learning
	Abstract
	Background
	Methods
	Datasets
	Attention-based multiple instance learning (AB-MIL) model
	Experimental approaches
	Application to whole-slide images
	Statistical analysis

	Results
	Prediction on tissue microarrays
	Prediction on whole-slide images
	Model scoring as a predictor for survival for double-expressors

	Discussion
	Conclusions
	References


