
R E S E A R C H Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Rhodes et al. Diagnostic Pathology           (2024) 19:33 
https://doi.org/10.1186/s13000-024-01445-w

Diagnostic Pathology

*Correspondence:
Roy H. Rhodes
rrhod3@lsuhsc.edu

Full list of author information is available at the end of the article

Abstract
Background Hypercytokinemia, the renin-angiotensin system, hypoxia, immune dysregulation, and vasculopathy 
with evidence of immune-related damage are implicated in brain morbidity in COVID-19 along with a wide variety 
of genomic and environmental influences. There is relatively little evidence of direct SARS-CoV-2 brain infection in 
COVID-19 patients.

Methods Brain histopathology of 36 consecutive autopsies of patients who were RT-PCR positive for SARS-CoV-2 
was studied along with findings from contemporary and pre-pandemic historical control groups. Immunostaining for 
serum and blood cell proteins and for complement components was employed. Microcirculatory wall complement 
deposition in the COVID-19 cohort was compared to historical control cases. Comparisons also included other 
relevant clinicopathological and microcirculatory findings in the COVID-19 cohort and control groups.

Results The COVID-19 cohort and both the contemporary and historical control groups had the same 
rate of hypertension, diabetes mellitus, and obesity. The COVID-19 cohort had varying amounts of acute 
neutrophilic vasculitis with leukocytoclasia in the microcirculation of the brain in all cases. Prominent vascular 
neutrophilic transmural migration was found in several cases and 25 cases had acute perivasculitis. Paravascular 
microhemorrhages and petechial hemorrhages (small brain parenchymal hemorrhages) had a slight tendency to be 
more numerous in cohort cases that displayed less acute neutrophilic vasculitis. Tissue burden of acute neutrophilic 
vasculitis with leukocytoclasia was the same in control cases as a group, while it was significantly higher in COVID-
19 cases. Both the tissue burden of acute neutrophilic vasculitis and the activation of complement components, 
including membrane attack complex, were significantly higher in microcirculatory channels in COVID-19 cohort 
brains than in historical controls.

Conclusions Acute neutrophilic vasculitis with leukocytoclasia, acute perivasculitis, and associated paravascular 
blood extravasation into brain parenchyma constitute the first phase of an immune-related, acute small-vessel 
inflammatory condition often termed type 3 hypersensitivity vasculitis or leukocytoclastic vasculitis. There is a 
higher tissue burden of acute neutrophilic vasculitis and an increased level of activated complement components 
in microcirculatory walls in COVID-19 cases than in pre-pandemic control cases. These findings are consistent with a 
more extensive small-vessel immune-related vasculitis in COVID-19 cases than in control cases. The pathway(s) and 
mechanism for these findings are speculative.
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Background
The World Health Organization declared coronavirus 
disease 2019 (COVID-19) a pandemic on 11 March, 2020 
[1]. COVID-19 vaccines became available in the United 
States by the middle of December, 2020 [2]. Severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), the 
viral cause of the pandemic, is the key disease factor, 
although each COVID-19 patient is susceptible to disease 
alteration through multiple disease-related, environmen-
tal, and genomic factors. These factors include severe 
disease, medications, mechanical ventilation, catheters, 
extended lengths of hospital stay [3–15], geographical [3, 
16, 17] and nutritional differences [18–21], and possibly 
air pollutants [22].

The course of COVID-19 might also be altered by 
patients’ responses to secondary bacterial, viral, and/
or fungal infections. These may be community acquired 
and/or nosocomial, and they are reported in COVID-19 
patients worldwide [5, 8, 10, 13, 16, 23–53]. The most 
common microbial species in secondary bacterial respi-
ratory infections in COVID-19 include members of the 
order Enterobacterales and Staphylococcus aureus [43]. 
Bacterial and viral coinfections at the time of SARS-
CoV-2 diagnosis seem to be infrequent [44], while 
secondary infections arise commonly following hospital-
ization [28].

Some coinfections in COVID-19 patients, similar to 
findings in previous viral infections [54], may be facili-
tated by immune system disorders arising from the 
original infection. In addition, the integrity of the gut 
microbiome, the collective genomes of the diverse micro-
biota that reside in the human gastrointestinal (GI) 
tract, has been shown to be disturbed by SARS-CoV-2, 
as observed in other infectious diseases [55], causing GI 
dysbiosis [9, 12, 18, 20, 24, 56–62].

Alterations of the GI microbiome provide interactions 
that can affect the brain by influencing autoimmune-
related changes through the innate immune system [9, 
12, 19, 62]. A damaging host response to a viral infection 
is more likely to occur from a virus that can interfere with 
one or more of the innate immune defenses [54].

Immune-pathway alteration in a SARS-CoV-2 infec-
tion includes an excessive innate immune response [63], 
exemplified by an inflammatory over-activation pro-
ducing cytokine storms [64]. The overacting innate sys-
tem is responsible for directing an impaired adaptive 
host immune defense in COVID-19 patients [63], and 
the adaptive immune system’s response is prolonged 
[3]. In severe COVID-19, brain injury does not have 
a single pathogenic mechanism that clearly drives the 

dysregulation of both innate and adaptive immune sys-
tem activity, which is reminiscent of autoinflammatory 
and autoimmune conditions. Brain damage might be 
caused by maladaptive host immune responses and by a 
bystander response that may magnify the tissue damage 
in COVID-19 patients [65].

Comorbid conditions in COVID-19 patients also have 
been associated with a severe clinical course. These 
include systemic hypertension, diabetes mellitus, obesity, 
ischemic heart disease, cancer, and a number of other 
conditions [66–68]. In addition to the more common 
COVID-19 immunomodulating comorbidities, there are 
less frequently encountered genomic or acquired comor-
bidities that might alter cytokine-related or blood-clot-
ting systems to produce a vasculopathy. Such comorbid 
conditions can include rheumatoid disease, the atypical 
hemolytic uremic syndrome, and the antiphospholipid 
syndrome, among others [69–73].

The combination of such influences on the disease 
course, at some point during a SARS-CoV-2 infection, 
might factor into directing the response to the infection 
toward autoimmunity [65, 69, 74–79]. Specifically, auto-
reactivity has been noted as a feature of a severe course 
of COVID-19 [65, 70, 74, 79–81], just as autoimmune 
phenomena have been found in severe infections prior to 
COVID-19 [66, 82–84].

It has been proposed that severe COVID-19 is a micro-
vascular disease [85]. Early in the COVID-19 pandemic, 
vascular pathology was implicated in clinical findings 
related to neurological effects of SARS-CoV-2 [3, 86–88], 
with immunosuppressive therapy showing some benefit 
[86]. Comorbidities such as hypertension were thought 
to cause at least some of the chronic vascular wall injury 
identified, and it was speculated that such alterations 
might render central nervous system (CNS) microcircu-
latory channels prone to autoimmune damage [89]. How-
ever, apart from chronic perivasculitis in lung [90, 91], 
skin [92–96], spleen [89], and heart [75, 91], there is little 
histopathological evidence for primary vasculitis in other 
organs [97].

In COVID-19 patients, histopathological evidence of a 
cellular inflammatory response in the brain (i.e., paren-
chymal infiltration of CD8+ T lymphocytes and of fewer 
CD4+ T cells) is at a higher level than in patients dying 
of severe respiratory failure, but it is at a lower level in 
COVID-19 patients compared to patients with long-term 
multiple sclerosis [98]. Focal chronic vascular wall [99, 
100] and chronic perivascular inflammation are recorded 
in the brain in COVID-19 [99–101], while clusters of 
CD8+ lymphocytes have been identified near microglial 
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cells in brain parenchyma [101]. Both immunoglobulin 
and complement component deposition involving CNS 
microcirculatory channels has been noted [102, 103]. 
These findings provide evidence of immune upregulation 
in COVID-19 autopsy brain parenchyma and small blood 
vessels.

An early theory of CNS involvement in a SARS-CoV-2 
infection proposes a direct infection of CNS vascular 
endothelial cells. Multifocal immunostaining for SARS-
CoV-2 proteins can be found in the brain [101, 102] and 
there is evidence of virions in brain parenchyma and in 
vascular endothelial cells [99, 104–107]. Some of the pos-
itive staining could be of SARS-CoV-2 spike proteins in 
viral fragments (pseudovirions) attached to endothelial 
cell receptors [108]. In a meta-analysis, 15.1% of autopsy 
brains are positive for SARS-CoV-2 by immunostain-
ing [109]. The virus is only found early in the infection 
in most analyses although lingering infection in the brain 
has been documented [110].

It has been suggested that brain damage following sys-
temic SARS-CoV-2 infection may be due to spike-protein 
pseudovirions (although infectious virions also could 
be responsible), and that the viral protein involved may 
drive a complement-mediated response through the 
lectin (alternate) complement protein pathway, result-
ing in microcirculatory channel wall C5b-9 (membrane 
attack complex) deposition [111, 112]. Lectin pathway 
activation in COVID-19 would suggest the possibility 
of immune-complex formation in COVID-19 hypersen-
sitivity lesions [113–115]. However, C5b-9 deposition is 
relatively nonspecific since in the atypical hemolytic ure-
mic and antiphospholipid antibody syndromes evidence 
shows that C5b-9–mediated endothelial injury can occur 
without significant cellular inflammation just as in the 
brain in COVID-19 [111]. C5b-9–mediated endothelial 
deposition can be more generally a sign of tissue damage 
such as in brain trauma [116].

Interestingly, in SARS-CoV-1, karyorrhectic polymor-
phonuclear neutrophils (PMNs) appear in small blood 
vessels in the lungs, heart, brain, and other organs [117]. 
Karyorrhectic PMNs forming tuft-like, beaded, or curved 
prongs of fragmenting nuclear material and ‘nuclear dust’ 
(leukocytoclasia), along with evidence of immune-com-
plex formation shown by the presence of vascular wall 
complement-component deposition, are key findings in 
type 3 hypersensitivity vasculitis. This small-vessel vas-
culitis has also been designated as acute neutrophilic 
vasculitis, leukocytoclastic vasculitis, or hypersensitivity 
vasculitis [89, 93, 118–125].

Acute neutrophilic vasculitis can often be identified in 
the brain in hypertensive patients [118, 121, 124, 126]. 
It appears most often in the skin and in other organs in 
association with hypertension, but also in a variety of 
other conditions [121, 122, 125].

Patients with severe COVID-19 appear to produce IgG 
immune complexes that promote an inflammatory acti-
vation of PMNs. Whole blood-derived PMNs are acti-
vated more in severe than in mild COVID-19 disease, 
they bind IgG via Fcγ receptors and, in patients with 
severe COVID-19, levels of serum IgG immune com-
plexes are higher than in healthy controls. These findings 
suggest that in COVID-19 IgG immune complexes might 
be involved in progression to severe COVID-19 disease 
[127].

Humoral immunity is an essential component of the 
adaptive immune response against SARS-CoV-2. Anti-
bodies are produced in response to a SARS-CoV-2 
infection and following a COVID-19 vaccination. In 
COVID-19, neutralizing immunoglobulin increases early 
and then a decline is found 1–6 months following symp-
tom onset. The rise and decline in IgM, IgA, and IgG 
titers are offset from one another, although they have 
similar curves, and these periodic changes may affect 
immunity at different points in active COVID-19 disease 
[128]. Individually variable findings such as these, alone 
or in tandem, may allow the host’s immune system to 
drift into unexpected consequences, making the immune 
response to COVID-19 often appear to be anomalous 
[115].

Genomic influence might also alter the direction of 
such responses. In one example, FCGR polymorphisms 
can affect interactions with IgG subclasses during an 
infection, such as when white blood cell Fcγ receptors 
recognize immune complexes. These interactions might 
result in immune-complex deposition as an individual 
response to an infectious disease or in an autoimmune 
disease [129, 130]. This is implied by findings in COVID-
19 where immune-complex formation in severe disease 
has been linked to Fc-receptor binding on PMNs [127].

Recent studies reveal a small impact associated with 
direct oral anti-coagulation medication on the devel-
opment of acute neutrophilic vasculitis over a period 
of one day to many months after administration. These 
medications are commonly given to patients with atrial 
fibrillation and venous thromboembolism. About half 
the patients in which this occurs show this complication, 
usually in the skin, about 10 days after administration, 
which might be an adequate time for antigen-antibody 
complexes to form. Although the case rate for vasculitis 
development is very low, the formation of leukocyto-
clastic vasculitis in small skin vessels is an acute clinical 
event. The few medications studied adequately include 
heparin, warfarin, and apixaban. In addition to skin, the 
kidney can be affected, and initiation in these organs may 
be through immune-complex deposition. In one case in 
which leukocytoclastic vasculitis developed in the skin, 
a subsequent kidney biopsy revealed Henoch-Schön-
lein purpura [131–133]. Leukocytoclastic vasculitis, 
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Henoch-Schönlein purpura, and related vasculitides may 
share similar origins [125].

Methods
Case selection
Following appropriate autopsy room engineering clear-
ance and upgraded equipment acquisition, available 
brains removed from 36 COVID-19 autopsies were 
studied from patients dying in June, 2020 to December, 
2021. All patients had at least one RT-PCR–positive 
SARS-CoV-2 test and clinical findings that were for the 
most part typical of COVID-19 as previously described 
in our region’s population [67]. The autopsy cases arrived 
at University Medical Center’s Emergency Department 
from home or by transfer to our tertiary care center from 
other hospitals in southeastern Louisiana or from south-
ern Mississippi. Eight non-COVID-19 cases from 2019 
were selected for immunostaining comparison of selected 
complement components. These eight non-COVID-19 
brain cases, along with 13 other autopsy brain cases from 
2019, were used as historical controls in further compari-
son studies. Twenty-seven contemporary control brain 
cases were gathered from late 2020 to late 2021.

Mechanical ventilation, autopsy pulmonary pathology, 
and microbiology laboratory findings
Mechanical ventilation data were collected from elec-
tronic medical records of all cohort cases. These data 
were used for comparison with postmortem lung find-
ings listed in autopsy reports.

Clinical and postmortem microbiology laboratory 
results including those for SARS-CoV-2 and non-SARS-
CoV-2 infections were similarly collected for all case 
groups. For microbial findings, these lists were com-
bined for each case in order to determine its microbial 
exposure.

Statistics
Spearman’s rho was used for correlation, the Mann-
Whitney U Test for group comparison, and chi-square 
(χ2) tests for distribution comparisons, using the 0.05 
level of significance. For the evaluation of histopatho-
logical findings, data were expressed as the percentage 
of microscopic slides that were positive for each finding 
studied in each case, with this number serving as a proxy 
for disease burden.

Results
COVID-19 case cohort clinicopathological findings
Clinical features of 36 COVID-19 autopsy cases included 
adults ranging from 32 to 84 years of age, with 17 being 
male, and with 25 African Americans. Survival after hos-
pital arrival ranged from 30  min to 84 days (mean sur-
vival, 20.4 ± 18.1 days). The patients had comorbidities 

typical of COVID-19 including hypertension (69.4%), 
diabetes mellitus (50%), obesity (50%), ischemic heart 
disease (41.7%), chronic pulmonary disease (22.9%), 
and cancer (11.1%), while dementia or mental disor-
der (16.7%), drug abuse (8.3%) and HIV infection (8.3%) 
were also represented in our cohort. Two patients had 
no past medical history recorded. Respiratory distress or 
acute respiratory failure at admission were common find-
ings, and the major diagnosis after admission was 2019 
novel coronavirus-infected pneumonia. Many patients 
reported headache, weakness, fatigue, or loss of smell 
shortly prior to admission. D-dimer serum levels were 
taken in 21 cases, including one within normal refer-
ence range with others varying from mildly to greatly 
elevated. Ventilator time varied from acute use only to 
multiple weeks of use, not always continuously. Steroid 
therapy was provided in 22 cases, remdesivir was given 
in 13 cases, and there was administration of tocilizumab 
in four cases (administered once, from two to 30 days 
prior to patient demise) and of convalescent plasma in 
one case. One patient was fully vaccinated against SARS-
CoV-2. Two patients had one vaccine dose.

There were seven deaths between 5 and 9 AM (19.4% 
of cases, a period accounting for 16.6% of the day) and 
11 deaths between 4 and 10 AM (30.6% of cases; 25% 
of the day). Compared to the remainder of the cohort, 
for deaths between 5 and 9 AM (χ2 = 0.12; p > 0.7) and 
for deaths between 4 and 10 AM (χ2 = 0.4; p > 0.5), there 
was no significant difference (Table 1). The postmortem 
interval between death and autopsy for the COVID-19 
cohort cases had a mean time of 2.2 days (median, 1.1 
days; range 0.25–11 days).

Formalin-fixed, paraffin-embedded tissue included 
32 to 50 blocks from cerebrum, cerebellum, and brain-
stem in each COVID-19 cohort case. These 1,284 blocks 
included all cerebral and cerebellar lobes and all three 
brainstem levels. Olfactory bulbs and tracts were taken 
in 27 cases. All microscopic sections were studied with 
hematoxylin-eosin staining, with immunostaining for 
white blood cell and serum proteins on selected cases.

Gross examination of the COVID-19 cohort included 
brain swelling with cerebellar tonsillar herniation in three 
cases, non-hemorrhagic cerebral infarcts in eight cases, 
and mild signs of brain atrophy consistent with age and 
comorbidities in a few cases. Three cases had significant 
numbers of petechial hemorrhages scattered in the brain, 
while several cases had only an occasional petechial hem-
orrhage. The most significant hemorrhage was in Case 
4 where histopathological findings associated with large 
hemorrhages included recent cerebral infarcts. Both the 
hemorrhages and infarcts in Case 4 contained significant 
infiltrations of PMNs. Stains were negative for micro-
organisms. One of the cases with cerebellar tonsillar her-
niations had global hypoxic nerve-cell change. Case 26 
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Case 
no.

Age (yr)/Sex Major comorbidities BMIa D-dimerb Ventilator 
(da)

COVID-
19–related 
treatment

Survival 
(da)/time 
of death 
(hr)

1c, d 67/M DM2 20.1 N/R Acutely N/R 0.021/0530
2c 61/F N/R N/R N/R Acutely N/R 0.035/1316
3 44/M HIV, HCV, TB, head injury several months previously 25.1 N/R Acutely N/R 0.063/0543
4 84/F HTN, IHD, arthritis, dementia, chronic venous stasis 23.4 N/R Acutely N/R 0.09/1408
5 47/F HTN, DM N/R N/R Acutely N/R 0.167/1728
6 72/F Obesity, influenza A 43 N/R Acutely N/R 0.25/1245
7 49/M HTN, obesity, SAD, BD 34.9 6.9 FEU 1 N/R 1/1404
8 61/M HTN, IHD, COPD, ethanol abuse 22 620 DDU 2 DEX, REM 4/0511
9 76/F HTN, DM, IHD, HIV 25.9 326 DDU None DEX 5/0444
10c 37/M HTN, HCV, HPV, hepatocellular carcinoma, SAD 26 N/R None N/R 5/0744
11c 49/F HTN, obesity 67.2 N/R 3 DEX, TOC 8/2340
12 61/F IHD, COPD, emphysema, asthma, rectal carcinoma 22.7 167 DDU 8 DEX 8/0243
13 64/F HTN, DM2, old stroke, obesity 34.6 N/R 2 N/R 10/1350
14 65/M HTN, DM, IHD, COPD, pulmonary fibrosis, obesity 32.6 2551 DDU < 1 DEX, REM 10/1330
15 63/M HTN, atrial fibrillation, obesity 46.1 45144 DDU 12 DEX, VAN 12/2025
16c 53/F HTN, DM2, COPD, pulmonary hypertension, emphy-

sema, obesity
47 N/R None TOC 13/1818

17c 58/F HTN, DM, IHD, obesity, atrial fibrillation, CRD 52 N/R 5 None 16/1749
18 61/F HTN, DM2, obesity 51.4 2528 DDU 17 DEX 17/1957
19 68/M HTN, DM2, CRD, anemia of chronic disease 21.8 2574 DDU None DEX 19/1100
20 62/F HTN, DM2, IHD, bilateral carotid artery stenosis, 

obesity, HCV, hypothyroidism
36.8 523 DDU 5 DEX, REM 19/0437

21 69/F HTN, DM2, IHD, obesity, CRD 44.5 2462 DDU 11 DEX, REM 22/0708
22e 56/F HTN, DM, IHD, COPD, asthma, obesity, blood clotting 

disorder, DVT, liver disease, CRD
45.4 N/R None DEX, REM 23/0914

23 73/F DM2 29 2805 DDU 7 DEX, REM, 
TOC

24/1033

24 59/F IHD, remote head trauma, small recent and interme-
diate cerebral infarcts, small intermediate/remote 
cerebellar infarcts

21.1 51317 DDU None DEX 26/0248

25 70/M HTN, DM2, IHD, obesity, COPD, asbestosis, obesity, 
CRD

77.0 527 DDU 23 DEX, REM 27/0322

26 61/M N/R 20.7 8.07 FEU 28 DEX, REM 29/0423
27 63/M HTN, DM2, IHD, SAD, HBV, HCV, schizophrenia, BD, 

hepatic cirrhosis
21.4 N/R 2, later 5, 

later 9
N/R 29/1654

28c 66/M HTN, HBV, hepatic cirrhosis 28.3 2884 DDU 13 DEX, REM 33/2108
29e 63/M HTN, DM, IHD, COPD, asbestosis, TTRA, HIV, HCV, 

recent left-sided weakness, CRD, hepatic cirrhosis
21.8 1450 DDU None N/R 35/2345

30 34/F DM, obesity 58.5 N/R 10, then 20 N/R 36/2159
31e 62/M HTN, DM2, DVT, BD, seizure history 24.8 21604 DDU 13, later 15 DEX, REM 39/1514
32 66/F HTN, obesity, schizophrenia, gout 40.2 252 DDU 18 DEX, REM, 

TOC
39/0724

33 64/F COPD, obesity, colon cancer 36 0.62 FEU 24 DEX, REM 41/1800
34 52/F HTN, IHD, obesity 54.6 5507 DDU 18 DEX 44/1138

Table 1 Selected clinical data for 36 COVID-19 autopsy brain cases
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had large, non-hemorrhagic intermediate infarcts in the 
territory of both middle cerebral arteries. Thrombotic or 
atherosclerotic obstruction of the common carotid arter-
ies had been identified in that case by clinical imaging.

Histopathologically, scattered microcirculatory peri-
vascular hemorrhages were identified in 25 of 36 cases 
(69.4%), and when found they appeared in up to 60% 
(mean, 12.2 ± 2.3%) of tissue blocks. Paravascular micro-
hemorrhages and a few petechial hemorrhages (together, 
considered to be small parenchymal hemorrhages) 
were present in 13 cases, involving up to 25.7% (mean, 
3.42 ± 1.2%) of blocks. Eight cases had both perivascular 
hemorrhages and small parenchymal hemorrhages.

Microthrombi were frequently present in the micro-
circulation throughout the cohort although in most 
instances they did not appear to be obstructive. Immu-
nostaining for platelet protein or for fibrin or fibrinogen 
showed very few microvascular lumina with apparent 
obstruction. Case 15, with hypertension and atrial fibril-
lation, had relatively few non-microvascular findings, but 
a non-occlusive organizing basilar artery thromboem-
bolus was present. Thirteen cases (36.1%) had microglial 

nodules, mostly in the brainstem. Isolated neuronopha-
gia was present in the brainstem in six cases (16.7%).

The most numerous brain findings in this cohort, 
aside from frequent neuronal hypoxic change, were 
in the microcirculation. The most common microcir-
culatory alteration was simple dilation (ectasia). In 
all but one case, variable numbers of microcircula-
tory channels had adventitial collagenosis or more 
compact hyaline sclerosis (Fig.  1). The third type of 
reactive microvasculopathy was intussusceptive 
arborization (IA), often seen as ‘mini-glomeruloid’ 
formations that were found in 15/36 (41.7%) cases.

All 36 cases had acute neutrophilic vasculitis with a vari-
able amount and distribution within the cohort from 
frontal lobe to medulla. This finding included only a few 
vessels in three cases. Acute neutrophilic vasculitis was 
recognized in the brain’s microcirculation by the pres-
ence of intraluminal PMNs with karyorrhexis (nuclear 
fragmentation, often including ‘nuclear dust’ formation). 
Affected microcirculatory channels generally had a rela-
tively thin wall, including some large microvessels (Fig. 2) 

Fig. 1 Cerebral microvasculopathy with mural collagenosis. (A) Severe mural distortion with irregular adventitial collagenosis of a microvessel in mid-
brain tegmentum near substantia nigra (Case 13). (B) Dilated microvessel with somewhat compact adventitial collagenosis in periventricular calcarine 
white matter (Case 12). Scale bars: 20 μm in (A); 50 μm in (B)

 

Case 
no.

Age (yr)/Sex Major comorbidities BMIa D-dimerb Ventilator 
(da)

COVID-
19–related 
treatment

Survival 
(da)/time 
of death 
(hr)

35 32/M DM 23.1 N/R 44 DEX, REM 56/0717
36 64/F HTN, obesity, schizophrenia, ulcerative colitis 33.3 962 DDU 2, then 32 DEX, CP 84/2152
Case data are arranged in order of increasing time of survival (days)

BMI Body mass index; DM2 DM type 2; N/R None recorded; HIV Human immunodeficiency virus infection; HCV Hepatitis C virus infection; TB Tuberculosis; HTN Systemic 
hypertension; IHD Ischemic heart disease; DM Diabetes mellitus untyped; COPD Chronic obstructive pulmonary disease; DEX Dexamethasone; REM Remdesivir; SAD 
Substance abuse disorder; BD Bipolar disorder; HPV Human papillomavirus infection; IV Intravenous; TOC Tocilizumab; CRD Chronic renal disease; DVT Deep vein 
thrombosis; HBV Hepatitis B virus infection; TTRA Transthyretin amyloidosis; CP Convalescent plasma
aBMI ratio (kg/m2) is 18.5 to 24.9 in most normal adults; obesity, ≥ 30
bD-dimer testing uses either the D-dimer unit reference range (normal, < 250 ng/mL DDU) or the fibrinogen-related reference range (normal, < 0.5 mg/L FEU)
cSARS-CoV-2 delta variant (PCR analysis)
dReceived two doses of vaccine against SARS-CoV-2
eReceived one dose of vaccine against SARS-CoV-2

Table 1 (continued) 
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(Table  2). In our COVID-19 cohort, acute neutrophilic 
vasculitis with leukocytoclasia was present focally or 
multifocally in 37.8 ± 26.6% of 1,284 microscopic slides of 
brain, representing a significant disease burden in most 
of the cases.

A small, dilated microcirculatory channel in the 
nucleus of the tractus solitarius contained karyorrhec-
tic PMNs (Fig. 3A). Two microcirculatory channels with 
thromboemboli on routine hematoxylin-eosin stain were 
of note because of their location at the edge of and near 
the nucleus of the tractus solitarius. In this instance, the 
thromboemboli were accompanied by prominent reac-
tive astrocytosis around the vascular channels (Fig. 3B).

In comparing acute neutrophilic vasculitis with small 
hemorrhagic vessel-associated findings, there was a very 
weak correlation between the vasculitis and the com-
bined group of perivascular hemorrhages, paravascular 
microhemorrhages, and petechial hemorrhages (Spear-
man’s rho = 0.097). The perivascular hemorrhages, when 
compared only to the group of small parenchymal hem-
orrhages, had even less correlation (Spearman, r = 0.08). 
There was a very weak correlation between the vasculitis 
and perivascular hemorrhages alone (Spearman, r = 0.12). 
Interestingly, all of the small parenchymal hemorrhages 
as a group tended to have a relatively low disease burden 
in cases with a high burden of acute neutrophilic vasculi-
tis as shown by a weak negative correlation (Spearman, r 

Fig. 2 Acute endotheliitis. (A) In midbrain tegmentum, a thin-walled microcirculatory channel has many karyorrhectic PMNs including some fragment-
ing into dot-like nuclear dust (Case 10). (B) Similar finding as in (A) is seen here in subarachnoidal microvessels between folia of the cerebellar superior ver-
mis (Case 10). (C) Small microcirculatory channel with mural collagenosis in medial temporal subependymal white matter has intraluminal karyorrhectic 
PMNs and mononuclear cells (Case 14). (D) In lateral temporal white matter, a dilated thin-walled microvessel is filled with PMNs, many with karyorrhexis, 
and mononuclear cells. There is scattered ‘nuclear dust’ (black arrow) and a few karyorrhectic PMNs appear to be transmigrating into fibrous adventitia 
(white arrow) (Case 14). (E) Mixture of karyorrhectic PMNs, some ‘nuclear dust’, and many mononuclear cells in very dilated microvessel in internal capsule 
near hypothalamus (Case 23). (F) Pyknotic and karyorrhectic PMNs arrayed along luminal border of microvessel in lateral hypothalamus (Case 34). Scale 
bars: 10 μm in (A–C, E and F); 20 μm in (D)
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= -0.21). When comparing survival with the total burden 
of small parenchymal hemorrhages in our cohort, the 
relationship was not significant (Mann-Whitney U-Test, 
z-ratio = 0.49, p > 0.6; Spearman, r = 0.06).

Significant direct microcirculatory mural damage from 
acute neutrophilic vasculitis was not often found his-
topathologically, although some ectasia was generally 
noted. In 15 cases (41.7%) at least one dehiscent capil-
lary (or possibly larger disrupted thin-walled microves-
sel) was observed, with or without limited perivascular 
hemorrhage and generally without karyorrhectic PMNs 
or ‘nuclear dust’.

In most of the cohort cases, there were a few scattered 
microcirculatory vessels with a suggestion of poorly-
formed platelet-fibrin thrombi accompanied by PMNs 
and a few mononuclear cells, and karyorrhectic PMNs 
were in a few of these vessels (Fig.  2C). Intraluminal 
eosinophils were found occasionally. Fibrinoid necro-
sis and intimal fibrous organization were not seen in the 
microcirculation.

Transmural PMN migration that resulted in acute peri-
vasculitis involved at least one microvessel in 25 cases 
(69.4%) (Fig. 4A–E) (Table 2). Karyorrhectic PMNs were 
often identified among the perivascular PMNs of acute 
perivasculitis (Fig. 4C–E). Mural transmigration of PMNs 
from the lumen to the perivascular space was apparent 
in a few dilated, thin-walled microvessels (Fig. 2D). Four 
cases had a few subarachnoidal arterioles in which trans-
migration was more prominently seen (Fig. 4F). In two of 
these cases, arteriolar transmigrating PMNs were immu-
nostained for myeloperoxidase.

Most cohort cases had at least a few small blood ves-
sels with mild perivascular chronic inflammatory 
cellular infiltration that may have represented immu-
nosurveillance. Increasingly prominent yet not marked 
focal perivascular cuffing appeared to represent chronic 
perivasculitis in at least four or five cases. Immunostain-
ing showed more CD8+ T cells than CD4+ T cells in these 

inflammatory deposits, and relatively few B cells were 
present.

Contemporary and historical control cases compared to 
COVID-19 cohort cases
Among the contemporary control cases, nine were vac-
cinated for COVID-19, including one of six patients with 
resolved COVID-19. There was no difference in the rate 
of acute neutrophilic vasculitis in the brain at autopsy 
between contemporary controls receiving or not having 
a record of receiving any COVID-19 vaccine (χ2 = 0.5; 
p > 0.4). The six resolved COVID-19 cases died from 2 to 
15 months (mean, 8.5 months) after symptom onset. The 
only case of resolved COVID-19 with acute neutrophilic 
vasculitis with leukocytoclasia had this finding in multi-
ple midbrain microcirculatory channels. This patient also 
had positive cultures for Streptococcus agalactiae, Entero-
bacter cloacae complex, and Achromobacter xylosoxidans 
(Table 3). The mean postmortem interval for the 21 non-
COVID-19–related contemporary control cases was 1.5 
days (median, 1  day; range, 0.25–7.4 days). For the six 
contemporary controls with resolving COVID-19, the 
mean postmortem interval was 2 days (median, 1.6 days; 
range, 1–3.5 days).

For contemporary controls, 21/27 cases (77.8%) had 
hypertension, 12/27 cases (44.4%) had acute neutrophilic 
vasculitis, and 9/27 cases (33.3%) had both hyperten-
sion and acute neutrophilic vasculitis. The microcircula-
tory channels with karyorrhectic PMNs in contemporary 
controls were focal or multifocal and included cerebrum 
(seven cases), cerebellum (five cases), and brainstem 
(four cases).

In historical controls, 15/21 cases (71.4%) had hyper-
tension, 8/21 cases (38.1%) had acute neutrophilic 
vasculitis with karyorrhectic PMNs in one or a few 
microcirculatory channels, and 6/21 cases (28.6%) had 
both hypertension and acute neutrophilic vasculitis 
(Table 4). The karyorrhectic PMNs in historical controls 
involved focal or multifocal microcirculatory channels 

Fig. 3 Nucleus of the tractus solitarius region. (A) Small, dilated microcirculatory channel adjacent to the nucleus in the rostral medulla contains PMNs 
with karyorrhectic nuclei (Case 14). (B) There is a thromboembolized microcirculatory channel at edge of nucleus of tractus solitarius (arrow) and similar 
blood vessel near the nucleus, with prominent reactive gliosis in the field (Case 36). Scale bars: 10 μm in (A); 20 μm in (B)
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in the cerebrum (six cases), cerebellum (one case), and 
brainstem (three cases). In the historical control cases, 
the postmortem interval was 1.5 days (median, 1.3 days; 
range, 0.2–3.8 days).

By simple inspection (and by χ2 analysis), the two con-
trol groups, when compared to each other, had no sig-
nificant difference in the rate of hypertension, acute 
neutrophilic vasculitis, or the combination of both hyper-
tension and acute neutrophilic vasculitis. No transmu-
ral migration of inflammatory cells, acute perivasculitis, 
or paravascular hemorrhages were noted in any control 
brains.

For our COVID-19 cohort cases, there was no signifi-
cant difference in the number of cases with hyperten-
sion (69.4%) compared to historical controls (χ2 = 0.004, 

p > 0.9) or to contemporary controls (χ2 = 0.008, p > 0.7) 
and no difference after combining both control groups 
for comparison (χ2 = 0.05, p > 0.8). The COVID-19 cohort 
also had no significant difference in the rate of diabetes 
mellitus from historical (χ2 = 1.7, p > 0.1) or contemporary 
control groups (χ2 = 0.007, p > 0.9) or in the rate of obe-
sity for historical (χ2 = 0.41, p > 0.5) or contemporary con-
trols (χ2 = 0.2, p > 0.6). Age range, race, and comorbidities 
were similar in the COVID-19 cohort and in both control 
groups.

Historical (9/130 = 6.9% of slides with focal or mul-
tifocal acute neutrophilic vasculitis as a proxy for dis-
ease burden) and contemporary controls (14/162 = 9% 
of slides) combined had significantly fewer slides with 
acute neutrophilic vasculitis than cohort cases, with an 

Fig. 4 Acute perivasculitis and mural PMN transmigration. (A) Dilated, thin-walled microvessel with serpiginous profile (arrows) is surrounded by peri-
vascular hemorrhage containing PMNs in rostral pontine tegmentum (Case 25). (B) Higher magnification of perivascular hemorrhage in A includes many 
PMNs indicating acute perivasculitis (Case 25). (C) Cerebellar folial white matter microvessel with collagenosis and perivascular hemorrhage with PMNs 
(Case 31). (D) Temporal fusiform gyrus white matter microvessel has perivascular hemorrhage with PMNs, some appearing to be karyorrhectic (Case 31). 
(E) Many PMNs ringing microvessel in mid-level basis pontis are karyorrhectic (Case 10). (F) Subarachnoidal arteriolar wall with transmigrating PMNs (Case 
31). Scale bars: 50 μm in (A); 20 μm in (B) and (C); 10 μm in (D–F)
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overall 37.8% disease burden in cohort cases (χ2 = 59.1, 
p < 0.00001). COVID-19 cohort cases compared to the 
combined historical and contemporary controls were 
queried for the presence of both acute neutrophilic 
vasculitis (disease burden) and hypertension together. 
Among the combined control cases, 15/48 (31.3%) had 
both hypertension and acute neutrophilic vasculitis 
compared with 25/36 (69.4%) in our COVID-19 cohort, 
showing a significantly higher rate in the cohort cases 
(χ2 = 4.2, p < 0.05).

Anti-coagulation medications were used for all 
COVID-19 cohort cases surviving over one day in the 
hospital. These included warfarin (1 case), heparin (18), 
apixaban (4), enoxaparin (22), clopidogrel (5), and aspi-
rin (13). Five of these drugs were employed in one case. 
Tables  3 and 4 list anti-coagulation medications for 
control cases. Multiple contingency table comparisons 
of COVID-19 cohort cases with control case groups 
obtained both significant and non-significant results 
in comparisons with cases receiving warfarin, heparin, 
and/or apixaban including comparisons with a history 
of hypertension, hepatitis C virus (HCV) infection, and 
small brain parenchymal hemorrhages. Separate compar-
isons of all anti-coagulation drugs used for each case had 
similar mixed findings.

Immunostaining of activated complement components
Immunostaining for complement components C3d, C4d, 
and C5b-9 was performed on 15 cerebral and/or brain-
stem sections selected for acute neutrophilic inflamma-
tory microcirculatory findings from six COVID-19 cases. 
Five cases were female. COVID-19 patient comorbidi-
ties in this group included hypertension (83.3%), obesity 
(66.7%), ischemic heart disease (66.6%), chronic pulmo-
nary disease (33.3%), diabetes mellitus (33.3%), psychiat-
ric disorder (33.3%), and cancer (16.7%).

Historical control cases included 16 sections (four cere-
bral, four brainstem) from eight cases with death prior 
to December, 2019. Control case comorbidities included 
hypertension (75%), obesity (62.5%), diabetes mellitus 
(50%), ischemic heart disease (25%), psychiatric disorder 
(12.5%), cancer (12.5%), and alcohol abuse (12.5%). Four 
cases were female. The age range was 53 to 86 years.

Formalin-fixed, paraffin-embedded sections immu-
nostained for complement components were evaluated 
to determine the number of microcirculatory channel 
walls that were positive either focally or diffusely for any 
one of the three separate complement component stains 
from each brain tissue block. Complement component 
staining subtotals were combined for each tissue section 
as an indication of complement activation in-situ in that 
section (proxy for disease burden). Staining was zero to 
40 microcirculatory channel walls in COVID-19 brain 
tissue sections (Fig.  5A–C). Complement component Ca
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immunostaining was mostly zero in controls, with the 
oldest control patient (with hypertension and cancer) 
having 14 positive microcirculatory vessels in one sec-
tion. C4d was more commonly heavily positive than 
C3d or C5b-9. Some microvascular walls, particularly 
with C4d complement component activation, appeared 
to have staining in separated cellular layers (Fig.  5C). 
The combined totals comparing all positive microcircu-
latory walls in COVID-19 cases with the positive chan-
nels in controls were subjected to the Mann-Whitney U 
Test which revealed a significant difference (z-ratio, 3.4; 
p < 0.01), while χ2 = 42.4 (p < 0.001).

Karyorrhectic PMNs in the COVID-19 cohort sections 
used for immunostaining were not positively-stained in 

any microcirculatory channels, where flowing blood was 
likely to have exchanged luminal cells prior to death. 
However, two of the cases had acute perivasculitis in 
which C4d and C5b-9 were present in association with 
PMNs in affected perivascular spaces (Fig. 5D–F).

Timing of deaths in COVID-19 cohort
For the cohort, there were seven deaths between 5 and 
9 AM (19.4% of cases, a period accounting for 16.6% of 
the day) and 12 deaths between 4 and 10 AM (33.3% of 
cases; 25% of the day). There was no significant difference 
when comparing the percentage of cases dying in these 
time periods (χ2 = 0.15; p > 0.6), and there was no differ-
ence when comparing all of the early AM deaths with the 

Table 4 Historical control autopsy brain cases
Case 
no.

Age (yr)/Sex Major clinical and autopsy diagnoses; positive blood cultures Ventilator 
use (da)

Anti-co-
agulation 
treatment

Karyor-
rhectic CNS 
small blood 
vessels

Hospi-
tal sur-
vival 
(da)

1 61/M HTN, DM2, obesity, DLE, lung abscess; diphtheroids Acutely Enoxaparin Yes 3
2 64/F HTN, DM, COPD, IHD, obesity, cancer; Acinetobacter baumannnii, 

diphtheroids
2 Enoxaparin No 2

3 70/F HTN, obesity, clinical remote stroke; Klebsiella pneumoniae N/R Warfarin, 
enoxaparin

Yes 4

4 53/F HTN, DM2, IHD, obesity; Clostridium perfringens, α-hemolytic Streptococcus Acutely N/R Yes 0.2
5 66/F HTN, DM, IHD, obesity, remote stroke NCH; Enterococcus faecalis, Pseudo-

monas mirabilis
N/R Aspirin, 

apixaban
Yes 1

6 52/M HTN, DM, IHD, CRD, pancreatitis; Klebsiella pneumoniae Acutely N/R No 9
7 61/F HTN, obesity, cancer, PE; Enterococcus gallinarum E/P Heparin, 

enoxaparin
Yes 11

8 69/F HTN, BD, basal ganglia hemorrhage; K. pneumoniae Acutely N/R No 0.2
9 65/F HTN, COPD, focal frontal lobe perivascular brain hemorrhage; 

diphtheroids
Acutely Heparin No 0.04

10 57/M DM2, PE Acutely Enoxaparin, 
tPA

No 2

11 35/M Obesity, epilepsy, frontotemporal FCD Acutely N/R No 0.04
12 38/M Obesity, aortic dissection, PE N/R Heparin, 

tPA
Yes 12

13 39/M HCV, Lyme disease, SAD, CAH, cervical spinal epidural abscesses; Staphy-
lococcus aureus

N/R N/R Yes 6

14 47/F HTN, DM2, IHD, COPD, obesity, congenital heart disease N/R tPA No 0.6
15 86/F HTN, cancer, CRD, aortic dissection, small remote basal ganglia infarcts; 

Staphylococcus aureus, α-hemolytic Streptococcus
Acutely N/R No 0.02

16 91/F HTN, IHD, CRD, BD, schizophrenia, stroke NCH; K. pneumoniae, Escherichia 
coli, Clostridium perfringens

Acutely N/R Yes 0.04

17 63/M HTN, IHD, BD, DVT, PE, 0.5-cm left frontal remote infarct E/P Enoxaparin Yes 11
18 59/F HTN, arthritis, gastric ulcers, sepsis, intestinal and gall bladder necrosis; 

Candida glabrata
E/P N/R No 2

19 58/M HTN, cancer N/R Heparin No 8
20 60/M Obesity, SAD, hepatic cirrhosis, thrombocytopenia; Candida albicans 2 Aspirin No 4
21 71/M HTN, DM2, IHD, obesity, cancer, CRD Acutely Aspirin No 6
Historical case data in order of 2019 autopsy case accession selected for age and comorbidities

Ethnicity: African American = 17; Caucasian = 3; Hispanic = 1

Abbreviations: HTN, systemic hypertension; DM2, diabetes mellitus type 2; DLE, discoid lupus erythematosus; DM, diabetes mellitus untyped; COPD, chronic 
obstructive pulmonary disease; IHD, ischemic heart disease; N/R, none recorded; NCH, not confirmed histopathologically; CRD, chronic renal disease; PE, pulmonary 
embolism; E/P, episodic/procedural; BD, bipolar disorder; tPA, tissue plasminogen activator; FCD, focal cortical dysplasia; HCV, hepatitis C virus infection; SAD, 
substance abuse disorder; CAH, chronic active hepatitis; DVT, deep vein thrombosis
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17 cases not dying in the early morning hours (χ2 = 0.16; 
p > 0.2).

Mechanical ventilation and pulmonary pathology findings
At autopsy, diffuse alveolar damage (DAD) was identi-
fied in 22/36 cohort cases (61.1%); hyaline membranes 
without an acute respiratory distress syndrome (ARDS) 
diagnosis, in 3/36 cases (8.3%); and ARDS, in 2/36 
cases (5.6%). Brief survival (up to 6  h) following hospi-
tal admission occurred in Cases 1–6 with no history of 
an acute illness except for recent collapse (Table  1). All 
six cases were on mechanical ventilation upon hospital 
arrival. Pulmonary pathology showed early to somewhat 
advanced lung damage in these cases. Case 1, surviving 
for 30  min, showed patchy DAD, while the other five 

cases, surviving up to 6  h, showed, in case order (i.e., 
increasing order of time of survival), severe ARDS, early 
DAD, congestion and focal hemorrhage, advanced DAD, 
and DAD with the proliferative stage of squamous meta-
plasia. These pulmonary findings from the rapid deaths 
upon hospitalization essentially reflected the pulmonary 
findings in most of the other cases. Most cases surviving 
over one day had various stages of DAD, one (Case 18) 
had ARDS, and several with various times of survival had 
various stages of pneumonia including, for example, an 
acute infectious process in Case 36. Case 8 had pulmo-
nary emboli; Case 10, marked pulmonary edema, conges-
tion, and premortem thrombi; and Case 12, metastatic 
adenocarcinoma. All of these findings were dispersed 
through the case list with little correlation of survival 

Fig. 5 Complement component activation. (A) Dilated microcirculatory wall in rostral basis pontis is focally positive with immunostaining for C3d (Case 
25). (B) Microcirculatory wall shown in (A) is seen here heavily positive for C4d. C5b-9 immunostaining was negative (Case 25). (C) Rostral basis pontis 
microcirculatory channel with immunostaining positive for C4d, with separation of mural layers (Case 25). (D) C4b positive immunostain associated with 
PMNs, in perivascular hemorrhage in periaqueductal central gray matter of midbrain, indicates acute perivasculitis with complement component activa-
tion (Case 4). (E) C5b-9 positive stain associated with PMNs in perivascular hemorrhage shown in (D) indicates membrane attack complex formation in 
acute perivasculitis (Case 4). (F) C5b-9 immunostaining in acute perivasculitis in rostral pontine tegmentum (Case 25). Scale bars: 10 μm in (A–F)
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time with the type or degree of pulmonary pathology. 
However, cases without mechanical ventilation during 
their hospital course tended to have less significant pul-
monary disease at autopsy than cases with intubation. 
In Cases 7–36, intubation in the final 24 h of life (20/30 
cases = 67%) reflected no more than a tendency for more 
severe pulmonary pathology compared to those not intu-
bated terminally.

Clinical and autopsy microbiology findings
In our COVID-19 cohort, the combined clinical and 
autopsy results for non-SARS-CoV-2 microbial agents 
revealed positive findings in 32/36 cases (88.9%) includ-
ing all body sites. Positive bacterial cultures were pres-
ent in 20/36 (55.6%) cases; fungi, in 18/36 (50%) cases; 
and viruses, by various detection methods, in 12/36 
(33.3%) cases. The most common microbial isolate was 
Enterococcus faecalis (13/36 = 36.1% of cases), followed 
by Staphylococcus aureus (total, 12/36 = 33.3% of cases, 
including methicillin-resistant Staphylococcus aureus 
[13.9% of cases]), Candida albicans (33.3%), Pseudomo-
nas aeruginosa (25%), Klebsiella pneumoniae (19.4%), 
Streptococcus spp. (19.4%), Escherichia coli (16.7%), Can-
dida glabrata (16.7%), and viruses (16.7%). Coagulase 
negative Staphylococcus (25% of cases) was most likely a 
contaminant [27].

For the two most common non-SARS-CoV-2 species 
infecting the cohort, survival with a positive E. faecalis 
or S. aureus culture was slightly longer than the cohort 
mean of about 20 days. Specific compartmentalized 
microbiota other than those identified by routine clinical 
testing in the nasopharynx, blood, urine, and lung were 
not studied.

Case 3 had tuberculosis (Table  1), not noted in the 
totals above. Also not specifically noted above, but listed 
in Table 1, were influenza A in Case 6 and chronic HCV 
infections in Cases 3, 10, 20, 27, and 29 (5/36 = 13.9%). 
Hepatitis B virus (HBV) infections were found by history 
or laboratory detection in Cases 27, 28 (Table 1), 30, and 
32 (4/36 = 11.1%). There was detection in cerebrospinal 
fluid taken clinically of varicella zoster virus in Case 1 
and of cytomegalovirus and human herpesvirus 6 in Case 
35.

Discussion
The 36 autopsy cases of COVID-19 include adults from 
close to middle age to elderly, there is almost equal 
gender representation, and presentation is often with 
hypoxia and frequently with the diagnosis of 2019 novel 
coronavirus-infected pneumonia. Clinical course var-
ies considerably in length and complexity. Most patients 
are hypertensive with adventitial sclerosis as evidence of 
microcirculatory mural injury, half have diabetes mel-
litus, half are obese, many have chronic heart and/or 

pulmonary disease, and a few have a history of cancer 
or other comorbidities. These are the findings in most 
COVID-19 patients in this age range [67, 68, 134]. Some 
COVID-19 comorbidities with a relatively low worldwide 
frequency that are included in our study groups, such 
as dementia, alcohol abuse, and nonalcoholic substance 
abuse [135], as well as HIV infection [136], are too low in 
case frequency for valid statistical comparisons. African 
Americans account for over half of the cohort cases, but 
given the small sample size no effect of race is inferred.

The most common clinical features among all COVID-
19 cohort cases and in both of the control groups are 
hypertension, diabetes mellitus, and obesity, with all 
three of these findings occurring at the same rate in all 
three case groups. However, the COVID-19 cohort has a 
significantly higher proportion of cases with acute neu-
trophilic vasculitis than controls, a higher disease burden 
of the vasculitis in brain tissue than controls, and a sig-
nificantly higher rate of hypertension plus acute neutro-
philic vasculitis than the control groups. These findings 
suggests at least indirectly that there may be a relation-
ship between hypertension and the histopathological 
finding of acute neutrophilic vasculitis with leukocytocla-
sia in the brain in the context of a SARS-CoV-2 infection.

Brain microcirculatory system and microvasculopathy
Normal CNS blood vessels 40–400 μm in diameter gen-
erally are referred to as microvessels, and when includ-
ing capillaries the term microcirculation is used [137]. In 
normal physiological and in pathological conditions, cap-
illaries and microvessels readily dilate and the microcir-
culation may require further enhancement of its normal 
physiological remodelling. This can include the forma-
tion of IA [138, 139]. The CNS microcirculation is below 
direct detection by magnetic resonance imaging (MRI), 
although through specific imaging methods the occur-
rence of brain microvasculopathy, including evidence 
of vessel-associated hemorrhage, has been suggested in 
COVID-19 patients [140].

Acute microcirculatory vasculitis in COVID-19 cohort and 
control cases
Acute neutrophilic microcirculatory vasculitis with leu-
kocytoclasia is present in all 36 of the COVID-19 cohort 
cases. This inflammatory process also involves transmu-
ral PMN migration in some microcirculatory channels 
and arterioles as well as acute perivasculitis. The vasculi-
tis is found in two of the three major brain regions (cere-
brum, cerebellum, and/or brainstem) in half of the cases, 
including in the brainstem in all but one case. Acute 
neutrophilic vasculitis otherwise involves few organs in 
COVID-19, with most positive cases being in the skin 
[92, 93, 95, 96].
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Acute neutrophilic vasculitis is a descriptive term that 
refers to leukocytoclastic vasculitis, urticarial vasculitis, 
and type 3 hypersensitivity vasculitis. Leukocytoclastic 
vasculitis is the “starting point” for many disparate types 
of vasculitis in a recent classification scheme [125]. The 
three stages of this immune-complex, small-vessel vas-
culitis include an initial intravascular karyorrhexis of 
PMN nuclei, with particles of residual chromatin mate-
rial (‘nuclear dust’) briefly accumulating, accompanied by 
PMN transmigration and mural damage. The mural dam-
age can include necrosis, especially in urticarial vasculi-
tis [141, 142]. In autoimmune vasculitis, PMN activation 
early in this stage is the main vascular damage effector 
along with hypercytokinemia [122, 143]. Immunohisto-
chemistry demonstrates mural deposition of activated 
complement components and often immunoglobulin in 
acute neutrophilic vasculitis [121, 122]. This stage con-
tinues with perivascular acute inflammation and hemor-
rhage, accompanied by small parenchymal hemorrhages 
(paravascular microhemorrhages) that can increase in 
size as petechial hemorrhages [93, 118–126]. This first 
stage includes disappearance of the apoptotic PMNs 
within a few days while tissue hemorrhage is still evi-
dent clinically in skin cases [122]. This is also the interval 
during which mural complement deposition disappears 
[124]. The second stage continues as a more intense 
necrosis of the luminal lining with dead cells, coagulated 
collagen, and serum proteins accumulating as a bright 
red ring around the vascular lumen (fibrinoid necrosis). 
Healing (the third stage) is by endovascular fibrosis [118, 
122, 126]. Only the first stage is seen in the COVID-19 
cohort and in both control groups. In the controls, only 
intraluminal acute neutrophilic vasculitis is found, with-
out acute perivascular inflammation or hemorrhage 
and without associated parenchymal hemorrhage. The 
mural complement deposition in historical controls may 
have one or more of many causes, the most likely being 
hypertension.

In our COVID-19 cohort, the first stage of acute neu-
trophilic vasculitis has an apparent decline of acute 
inflammatory cells as paravascular microhemorrhage and 
petechial hemorrhage develop in the brain parenchyma. 
This is illustrated by a weak, negative correlation of these 
two findings (acute neutrophilic vasculitis compared with 
the burden of small parenchymal brain hemorrhages). 
This correlation, although not at a level of statistical sig-
nificance, is consistent with histopathological findings 
expected in this type of vasculitis. That is, both acute 
inflammation and hemorrhage coexist in the tissue as the 
inflammation declines while the small, damaged blood 
vessels continue to extravasate blood.

Streptococcus spp. [121, 125], HBV, HCV [119, 121, 142, 
144], and possibly Enterococcus faecalis [145], altogether 
involving 27/36 (75%) of our COVID-19 cohort, can be 

associated with the development of acute neutrophilic 
vasculitis. Generally, these are coinfections, although in 
other COVID-19 patients, as in our cohort, bacteremia 
has been considered for its likely influence on the course 
of the disease [13, 39, 40, 146]. This includes the influence 
that bacteremia can have on the development of GI tract 
dysbiosis [62]. For some of these microbes, an association 
has been made with the generation of antibodies that 
might lead to an immune-related vasculitis [54, 147, 148]. 
Other microbial associations that have been incrimi-
nated in the induction of acute neutrophilic vasculitis 
in the skin include Ureaplasma urealyticum, Aerococcus 
viridans, Burkholderia cepacia, Listeria monocytogenes 
[124], and dengue virus [149].

Connective tissue diseases, ANCA-associated vasculiti-
des, cryoglobulinemic vasculitis, IgA vasculitis (Henoch-
Schönlein purpura), and C1q hypocomplementemic 
urticarial vasculitis are other conditions that might 
express the histopathology of acute neutrophilic vasculi-
tis [150]. Some of these conditions can be complicated by 
onset of a SARS-CoV-2 infection [151].

ANCA-associated vasculitis has presented clini-
cal problems when already present in patients with 
new onset of a SARS-CoV-2 infection, while new-onset 
ANCA-associated vasculitis also occurs in some COVID-
19 patients [152]. ANCA-associated vasculitis develop-
ing in COVID-19 patients has an association with female 
gender and with severe disease [151]. This type of vascu-
litis is associated with pauci-immune glomerulonephritis 
in a few patients [153, 154], one of whom also has leu-
kocytoclastic vasculitis in a skin biopsy [153]. Leukocy-
toclasia characterizes the microscopic polyangiitis form 
of ANCA-associated vasculitis although without mural 
complement component deposition. The other forms 
of ANCA-associated vasculitis, which may have kary-
orrhectic PMNs, are characterized by granulomatous 
inflammation [121, 122].

Various medications are implicated in the development 
of acute neutrophilic vasculitis [121], including tocili-
zumab [155, 156], which was administered in four of our 
COVID-19 cohort cases. Acute neutrophilic vasculitis in 
the skin [94, 157, 158] or ANCA-associated glomerulo-
nephritis has followed a COVID-19 vaccine [159, 160], 
with one of the renal biopsies showing karyorrhectic 
acute perivasculitis [159].

Acute neutrophilic vasculitis has a very small chance 
of occurring one day to about 18 months following the 
administration of some anti-coagulation medications, 
including warfarin, heparin, and apixaban [132, 133]. 
These and other anti-coagulants were frequently used in 
our COVID-19 cohort and in controls. The large propor-
tion of hypertension in the study cases, as well as viral 
and bacterial associations with acute neutrophilic vas-
culitis, constitute confounding variables that prevent a 
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reliable statistical association of this class of medications 
with vasculitis in our study.

Urticarial vasculitis does not often involve the brain 
[121]. A non-COVID-19 clinical report suggests indi-
rectly that urticarial vasculitis might be present in the 
cerebrum in an isolated case [161]. Since urticarial vas-
culitis tends to cause small-vessel mural destruction, it 
cannot be ruled out that some of the dehiscent micro-
circulatory walls found in our COVID-19 cohort may at 
least in part represent urticarial vasculitis or theoreti-
cally, under the proper circumstances, another vasculi-
tis such as Henoch-Schönlein purpura into which it may 
have evolved from its early leukocytoclastic origin [125, 
141, 142].

Dehiscent microcirculatory channels may also form in 
a different manner in this cohort such as from hypercyto-
kinemia, RAS dysfunction, microcirculatory remodelling, 
following thromboembolism [162], possibly following 
the effects of viral capsid proteins and/or direct infec-
tion or host response/bystander effects to viral lesions, 
and perhaps in a C5b-9–mediated thrombotic vascular 
injury syndrome (atypical hemolytic uremic syndrome 
or antiphospholipid antibody syndrome) [111]. An addi-
tional possible cause of necrotizing vasculitis with kary-
orrhectic PMNs is an E. faecalis infection [145].

The pathogenic origin of acute neutrophilic vasculitis 
in COVID-19 is unknown. Principal conditions specu-
lated to underlie microcirculatory injury during the first 
wave of COVID-19 were hypoxia [99, 134, 163, 164], 
hypercytokinemia, and renin-angiotensin system (RAS) 
dysfunction [165]. Autoimmunity associated with hyper-
cytokinemia or expressed as type 3 hypersensitivity vas-
culitis in the CNS was postulated as a potential cause of 
further vascular damage in COVID-19 beyond damage 
associated with hypoxia and host factors [68, 74, 89, 134]. 
Other factors that may influence the development of an 
autoimmune or immune-complex small-vessel vascu-
litis in COVID-19 patients might include environmen-
tal conditions and comorbidities such as hypertension, 
rheumatic conditions, cancer, and non-SARS-CoV-2 
infections as discussed, as well as drugs [121, 122] and 
perhaps, in addition, the SARS-CoV-2 infection itself 
[54]. Among other difficulties in sorting out these con-
founding variables are the poorly-understood factors that 
can lead to anomalous findings in immune responses in 
COVID-19, particularly in immune-complex formation 
[115].

Immune-complex formation by the end of the second 
week of a SARS-CoV-2 infection, when symptoms may 
begin, would align with the presumed origin of acute 
neutrophilic vasculitis in the shortest-surviving COVID-
19 cohort cases. These cases, with less than one day of 
hospital survival, may have been infected ten days to 
two weeks prior to hospitalization, although a longer, 

asymptomatic infection cannot be ruled out. Perhaps 
these early deaths with vasculitis can be at least theo-
retically matched to the later deaths in the cohort by a 
changeable window of opportunity in immune-system 
pressure (leading to immune-complex formation). One 
mechanism for such a window might arise from the peri-
odic immunoglobulin class switching observed over the 
course of the first few months of COVID-19, where such 
switching has been suggested to affect immunity [128]. 
Alternatively, acute neutrophilic vasculitis in these early 
deaths, as in the remainder of the cohort, may either have 
originated through another avenue such as a comorbid-
ity or coinfection or by a combination of these underlying 
factors.

Central hypoventilation syndrome
Note is taken of the possibility of a central hypoventila-
tion syndrome which has been suggested to occur in 
COVID-19 involving the brainstem’s central cardiopul-
monary pacing network [166]. In this syndrome, there is 
failure of the switch from automatic to voluntary breath-
ing around daybreak, and thus respiratory effort ceases as 
normal pacing fails from a variety of causes [167]. Fail-
ure of the switch from automatic to voluntary breathing 
remains a question that is not reliably supported in our 
small case cohort.

Study limitations
Limitations in this study mainly involve the relatively 
small size of the COVID-19 autopsy cohort, with simi-
larly small control groups. Since group comparisons are 
statistical, most key group similarities and differences 
are clear within the study. The factors in which statisti-
cal comparisons are weak or uncertain include important 
subjects that might help to enlighten the origin or final 
development of the acute neutrophilic vasculitis (viz., 
is it type 3 hypersensitivity vasculitis or is it developing 
into urticarial vasculitis?). In addition, the origin of the 
acute vasculitis could be related to one or more factors 
in the COVID-19 autopsy cases, such as a hepatitis virus 
or bacterial infection in conjunction with the SAR-CoV-2 
infection or as a separate cause of the vasculitis. Compar-
ison with control cases is also hampered by the relatively 
short survival of control cases. The number of vacci-
nated cases in the second year of the study is uncertain 
since some were admitted with very little history. Tocili-
zumab, COVID-19 vaccination, and anti-coagulation 
medications, although implicated in acute neutrophilic 
vasculitis, are too rarely reported in the literature for 
medications to be assessed adequately here, and as with 
other potential causes they remain confounding vari-
ables. A similar problem arises from possible influences 
on vasculitis by dysbiosis in various compartmentalized 
microbiota environments or from uncharted parameters 
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of innate immunity markers, serum complement com-
ponents, and white cell immunoglobulin receptors. 
Since this is not a prospective study, matching available 
case groups for comorbidities and treatment can only be 
approximated.

Conclusion
The major observation in 36 COVID-19 autopsy brains 
is the finding of the first stage of acute neutrophilic vas-
culitis proximate to death in each case. There is a signifi-
cantly lower burden of this type of vasculitis in control 
cases. Clinical and histopathological brain findings in the 
COVID-19 cases, including non-SARS-CoV-2 microbial 
data and general autopsy findings, provide no certain 
single clinicopathological pattern or tendency that might 
suggest a mechanism for the high level of acute neutro-
philic vasculitis in COVID-19. The associations that fit 
this finding the best are the SARS-CoV-2 infection itself, 
its treatment, its sequelae, and speculative immune-sys-
tem changes such as periodic alterations in neutralizing 
antibodies. Comorbidities (particularly hypertension) 
and hospitalization, particularly with mechanical ventila-
tion, might be important factors in the origin of vasculitis 
or in its progression. Many of these factors are known to 
influence the production of an immune-complex–related 
microcirculatory vasculitis.
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