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Abstract 

Background Differences in the preparation, staining and scanning of digital pathology slides create significant 
pre‑analytic variability. Algorithm‑assisted tools must be able to contend with this variability in order to be appli‑
cable in clinical practice. In a previous study, a decision support algorithm was developed to assist in the diagnosis 
of Hirschsprung’s disease. In the current study, we tested the robustness of this algorithm while assessing for pre‑
analytic factors which may affect its performance.

Methods The decision support algorithm was used on digital pathology slides obtained from four different medical 
centers (A‑D) and scanned by three different scanner models (by Philips, Hamamatsu and 3DHISTECH). A total of 192 
cases and 1782 slides were used in this study. RGB histograms were constructed to compare images from the various 
medical centers and scanner models and highlight the differences in color and contrast.

Results The algorithm was able to correctly identify ganglion cells in 99.2% of cases, from all medical centers (All 
scanned by the Philips slide scanner) as well as 95.5% and 100% of the slides scanned by the 3DHISTECH and Hama‑
matsu brand slide scanners, respectively. The total error rate for center D was lower than the other medical centers 
(3.9% vs 7.1%, 10.8% and 6% for centers A‑C, respectively), the vast majority of errors being false positives (3.45% vs 
0.45% false negatives). The other medical centers showed a higher rate of false negatives in relation to false positives 
(6.81% vs 0.29%, 9.8% vs 1.2% and 5.37% vs 0.63% for centers A‑C, respectively). The total error rates for the Philips, 
Hamamatsu and 3DHISTECH brand scanners were 3.9%, 3.2% and 9.8%, respectively. RGB histograms demonstrated 
significant differences in pixel value distribution between the four medical centers, as well as between the 3DHISTECH 
brand scanner when compared to the Philips and Hamamatsu brand scanners.

Conclusions The results reported in this paper suggest that the algorithm‑based decision support system has suffi‑
cient robustness to be applicable for clinical practice. In addition, the novel method used in its development – Hier‑
archial‑Contexual Analysis (HCA) may be applicable to the development of algorithm‑assisted tools in other diseases, 
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for which available datasets are limited. Validation of any given algorithm‑assisted support system should nonetheless 
include data from as many medical centers and scanner models as possible.

Keywords Hirschsprung’s disease, Algorithm, Robustness, Machine learning, Digital pathology

Background
Digital pathology is rapidly evolving as new technologies 
emerge, costs are reduced and availability increases. The 
practice of digital pathology most often involves obtain-
ing a whole slide image (WSI) by digitally scanning a glass 
slide in one of many commercially available slide scanners. 
The scanned slides have been shown to be an adequate 
replacement to glass slides (in most instances) [1]. Conse-
quently, many pathology departments have fully embraced 
the use of digital pathology for routine diagnosis [2–4]. 
Digital images have the added benefit of being readily 
available for use in computational pathology. These meth-
ods may include basic counting and measurements, as well 
as, more sophisticated tools based on artificial intelligence 
(AI) and deep learning (DL) [3]. DL tools have been suc-
cessfully implemented in tasks such as tumor classification 
and grading, assessment of cellularity, mutation prediction 
and more [5–11]. More recently, similar tools have been 
used for algorithm-assisted [12, 13] or even fully-auto-
mated diagnosis [14, 15]. Different slide scanner models 
may have differences in both features and performance 
[16]. Different manufacturers use different file systems 
for WSI, which may not be easy to convert. This limita-
tion may prove problematic, especially for large datasets 
obtained for either research or routine work at pathology 
departments who happen to make use of several differ-
ent slide scanners [17]. Another issue is the possible loss 
of fidelity when compared to a glass slide due to a failure 
to detect and scan small tissue fragments or inconsistent 
image quality [18]. Furthermore, slides scanned by differ-
ent scanners may appear different due to discrepancies 
in color. Standardization, validation and reproducibility 
of color for WSI is a well-known challenge, further com-
plicated when using additional devices (scanner, display, 
etc.) with complex color transformations across devices 
and possible loss in color information [19]. Histologi-
cal slides from different pathology departments differ not 
only in scanning but also in the preparation and staining 
of the original glass slides. As a result, their appearance 
may be highly heterogeneous (color, intensity, saturation, 
etc.). DL methods and algorithms may be highly sensitive 
to these differences as well as to artifacts, which an obser-
vant pathologist would not consider a problem. Relatively 
few studies attempted to evaluate the effects of histologi-
cal artifacts on the performance of these algorithms [20–
23]. As a result of these additional factors, it will often be 
wrong to simply assume that an algorithmic model or DL 

tool trained on slides from one department will be applica-
ble to slides from another department, another scanner or 
even the same lab, without proper validation [24].

In a previous study a decision support algorithm (DSA) 
had been developed and used as part of a decision sup-
port system (DSS) meant to assist pathologists in the 
diagnosis of Hirschsprung’s disease (HSCR) [12]. HSCR 
is a congenital disease characterized by an absence of 
ganglion cells in plexuses of the gastrointestinal tract. 
The histological diagnosis usually requires surveying doz-
ens of slides (and possible use of immunostains) in search 
of ganglion cells, making the diagnosis of HSCR only in 
their absence. This process requires a significant invest-
ment of time and effort [25, 26].

Using an algorithm-assisted approach a pathologist 
with expertise in HSCR (7 years of experience) was able 
to achieve 100% accuracy with 95% time saved. A non-
expert would have to send 20–58% of the cases to expert 
consultation to achieve similar performance [12]. Fur-
thermore, in a follow-up study, a very short (10 min) 
training session with the same DSS was shown to greatly 
improve the pathologists performance in the algorithm-
assisted diagnosis of HSCR while minimizing the need 
for expert consultation [13]. The DSS had been created 
based on a data set from a single hospital, processed at 
the same pathology laboratory and scanned by the same 
slide scanner model (Philips—IntelliSite Ultra-Fast 
Scanner).

In the current study, we aim to test and assess the 
robustness of the DSS by challenging the system to assist 
in the diagnosis of cases from other hospitals (slides from 
other pathology laboratories) scanned locally, as well as, 
on local cases, scanned at other facilities by different slide 
scanner models.

Methods
All methods were performed in accordance with the rel-
evant guidelines and regulations.

Clinical samples
The cases used in the current study were obtained from 
four different medical centers as four distinct cohorts.

Center A—Soroka university medical center in 
Be’er Sheva, Israel.
Center B—Rambam medical center in Haifa, Israel.
Center C—Emek Medical Center, Afula, Israel.
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Center D—Sourasky medical center, Tel-Aviv, Israel. 
The number of cases, slides and their usage are sum-
marized in Table 1.

Pathological ground truth was determined in accord-
ance with the medical records from each medical center. 
In cases where the available material was only par-
tial (missing slides, infeasible recovery) the case was 
reviewed by an expert in HSCR (with 7 years of experi-
ence) and the pathological ground truth was based on the 
expert’s opinion and applicable only to the sample in its 
current state. Therefore, if a sample was originally diag-
nosed as non-HSCR, based on the presence of ganglion 
cells within missing slides, it will be re-evaluated and 
treated as a HSCR case for the purpose of this study (As 
this classification has no direct bearing on the DSA’s abil-
ity to identify ganglion cells).

Algorithmic approach
The decision support system (DSS) used in this study had 
been developed as part of a previous study [12]. The DSS 
makes use of a decision support algorithm (DSA) based 
on a novel approach called "Hierarchical Contextual 
Analysis" (HCA). [12].

The model was developed in several stages. Initially raw 
un-annotated data was used along with insights derived 
from the pathologist’s routine approach to HSCR in a 
phase of fully unsupervised learning aimed at creating 
the algorithm framework and degrees of freedom the 
algorithm possesses. The framework incorporated convo-
lutional neural networks (CNN) along with decision pro-
cesses inspired and based on expert knowledge. U-Net 
CNN structure was used as an approximation of the 
desired model. Subsequently, training of the algorithm 
was performed in several stages. Initially, WSIs of normal 
colonic tissue were used (86 in total). A single pathologist 
manually marked ganglion cells while unmarked fields 
were regarded as negative. A total of 3791 cells were 

marked. 10% of the data was reserved for performance 
measurement, while the reminder was used for the con-
struction of the algorithm. We then tailored the system to 
provide its own annotations on 9 additional WSIs from 
cases with clinical suspicion of HSCR by training the 
deep neural networks. The pathologist provided feedback 
on each annotation, which was used to further fine tune 
the algorithm. Data augmentation was aimed at improv-
ing the robustness of the algorithm, in part via the use of 
generative adversarial networks (GANs). The algorithm 
was then run on data reserved for performance analysis 
and we determined the intersection over union (degree 
of overlap between the algorithm and the pathologist 
markings), the detection rate, and the rate of false alarms. 
Finally, the algorithm was run on a validation cohort of 
50 cases with clinical suspicion of HSCR, containing 
727 WSIs. The results have been published in a previous 
study [12]. A schematic description of this process is also 
depicted in Fig. 1.

DSA basic functionality
The DSA segregates each digital slide into multiple 
images and surveys them for potential ganglion cell can-
didates. Each candidate is attributed a score between 0 
and 1, indicating how closely it resembles a ganglion cell 
(With a "1" being a definitive ganglion cell). The images 
with the highest scores (closest to 1) are then presented 
to the pathologist (in sets of 3, up to 12 sets per case). The 
pathologist makes the diagnosis based on the presented 
image set, instead of having to manually survey dozens of 
whole slides, thus saving time and effort while maintain-
ing diagnostic accuracy.

Slide digitalization
The four cohorts of HSCR cases have been scanned 
at Center D, using the Philips—IntelliSite Ultra-Fast 
Scanner.

In addition, subsets of the Center D cohort have been 
scanned by two additional scanners: The Panoramic 250 
flash III slide scanner, 3DHISTECH Ltd, Hungary and the 
Hamamatsu Nanozoomer S210, Hamamatsu Photonics, 
Japan.

Figure 2 summarizes the four cohorts and relevant sub-
sets scanned by each scanner.

Fine‑tuning of the DSA
Two cases of each cohort from Centers A-C have 
been used for fine-tuning of the DSA (six cases in 
total). Center D was excluded from this phase, as the 
DSA had been originally trained on data from Center 
D. Manual segmentations of ganglion cells and back-
ground (negative samples) have been performed on 
each of the six cases used for fine-tuning and the data 

Table 1 Summary of the four cohorts of Medical centers A‑D. 
Cases used for fine tuning of the DSA have been excluded from 
the final validation cohort

a Including the original validation cohort of 50 cases and 727 slides from a 
previous study

Cohort Total 
number of 
cases

Total 
number of 
slides

Cases reserved 
for fine tuning 
of the DSA

Final 
validation 
cohort (cases)

Center A 51 396 2 49

Center B 31 143 2 29

Center C 51 322 2 49

Center D 59a 921 0 59

Total 133 1782 6 186
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was integrated into the DSA in order to compensate 
for potential confounders such as inter-hospital dif-
ferences in staining intensity, hue, sample processing 
etc. All of the segmentations were performed by a sin-
gle pathologist (with 5 years of experience). A total of 
337 definite ganglion cells have been marked (95, 184, 
58 for Centers A, B and C, respectively). Additionally, 
153 markings of findings suspicious for ganglion cells 
have been made (22, 103, 28 for Centers A, B and C, 
respectively)."Definite", "Suspicious" and "Negative" 
markings have all been used in the fine-tuning pro-
cess. Cases used for fine-tuning of the algorithm have 

been excluded from the validation phase of the anal-
ysis. The final validation cohorts are therefore 49, 29 
and 49 cases for Centers A, B and C, respectively. The 
fine-tuning process described here is merely the lat-
est addition to  the development and improvement of 
the DSA as described in previous works. The improve-
ment in performance that could be attributed directly 
to this modification was modest, at less than 1%, and 
within the range of statistical error. For the purpose of 
this study, only the latest version of the DSA had been 
used, with previous versions considered part of the 
development process.

Fig. 1 Algorithm construction and training schematic: A The algorithm training phase – Slides from normal colons were selected and ganglion 
cells were manually annotated The algorithm was then trained on these annotated fields. 10% of the data was reserved for further analysis. B 
The algorithm analytical performance phase—included reserved data, as well as additional slides from cases with clinical suspicion of HSCR. The 
algorithm was run on un‑annotated data to produce annotations of its own, for which a pathologist has provided feedback. C The algorithm 
was then run on an additional 50 cases with clinical suspicion of HSCR and provided image sets of the best ganglion cell candidates it could find 
along with a their respective scores (0 to 1). The pathologist reviewed the image sets and provided his own score (1 to 5). The overall HSCR status 
of a given case was determined through a combination of the algorithm and pathologist scores (according to previously empirically determined 
decision criteria)
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Evaluation of the DSA
The DSA reviewed all cases and extracted sets of images 
containing ganglion cell candidates, each is attributed a 
score between 0 and 1 (Fig. 3).

The total number of image sets was 675, 417, 465 
and 667 for centers A through D, respectively. All of 
the extracted images have been reviewed by a single 
pathologist (with 5 years of experience) who was tasked 

Fig. 2 A schematic depicting the four cohorts, the number of cases used for fine‑tuning of the algorithm and the distribution of cases 
between the three different scanner models. Two cases from medical centers A‑C have been used for fine‑tuning and therefore excluded 
from the validation cohort. All of the cases from medical centers A‑D have been scanned by the Philips brand scanner. In addition, limited subsets 
(from the same cohort) of cases from medical center D have also been scanned by the Hamamatsu and 3DHISTECH brand scanners

Fig. 3 Microphotographs of ganglion cell candidates by their respective DSA scores in ascending order. The scores for each of the images 
a through f were 0.13, 0.32, 0.5, 0.62, 0.78 and 1, respectively. When examined by a pathologist, images a and b contained no ganglion cells (the 
low DSA score was appropriate), images e and f contained definitive ganglion cells (appropriate high DSA score), while images c and d were found 
to contain ganglion cells, yet their features were less pronounced (thus the intermediate DSA score)
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with attributing a score between 1 and 5 to each image 
set.

The scores are as follows:

1. No ganglion cells seen (Certain),
2. No ganglion cells seen (Uncertain).
3. Uncertain/could not determine,
4. Ganglion cells seen (Uncertain).
5. Ganglion cells seen (Certain).

The scores given by the pathologist are used along 
with the DSA scores (between 0 and 1) to determine 
the classification of each case according to crite-
ria reported in a previous study [12]. Each case was 
classified as "positive" for ganglion cells, "negative" 
for ganglion cells or "in doubt", meaning a consulta-
tion from an expert HSCR pathologist is required 
(Fig.  4). Of note, "consultation" in this context means 
an "in house" revision of only the selected image sets 

(often requiring mere seconds and no more than a few 
minutes).

The classification made by the DSS (combining the 
DSA and pathologist) was then compared to the clinical 
and pathological diagnosis. For instance, a classification 
of "Positive" for ganglion cells, would only be considered 
as a "True positive" if it were to match with the pre-estab-
lished diagnosis. Cases which were referred to expert 
consultation were reinterpreted as appropriate and their 
classification was assigned according to the diagnosis 
established by the expert.

Further analysis
A more in-depth analysis followed to examine the 
algorithm’s performance at the level of the image sets 
extracted from each case, rather than the case as a whole.

Special attention had been granted to image sets 
for which the pathologist and DSA scores showed 

Fig. 4 A diagram representing the structure of the DSS and the DSA, as well as the relationship between them. The process begins with digitally 
scanned whole tissue slides (a). The DSA searches through the scanned image and locates "areas of interest" which contain ganglion cell candidates 
(b). The DSA extracts images of each ganglion cell candidate and its immediate surroundings and also provides a score between 0 and 1 for each 
image, representing the level of "confidence" that the candidate is indeed a ganglion cell. The images containing the candidates with the highest 
scores are presented to the pathologist in up to 12 sets of 3 images each (d). The pathologist provides scores between 1 (no ganglion cells) 
and 5 (definite ganglion cells) to each image set. The function of the DSA is now complete. The DSS is in fact the combination of the pathologist 
score along with the DSA score. The DSS classifies each case according to a set of decision criteria as positive, negative or in doubt as follows: 1. 
Positive (non‑HSCR)— the pathologist gave a score of 5 to any two (or more) image sets 2. Negative (HSCR)—The criterion for "Positive" is not met 
AND the average AI score is < 0.6. 3. In doubt (requires expert consultation)—The criterion for "Positive" is not met AND the average AI score is ≥ 0.6
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complete discordance. The cut-offs set for this analysis 
were as follows:

A. Image sets to which the pathologist had attributed a 
score of "5" while the DSA score was below 0.3 ("False 
negative").

B. Image sets to which the pathologist had attributed a 
score of "1" while the DSA score was above 0.7 ("False 
positive").

The false negative and positive rates have been fur-
ther analyzed for the probable cause for error. Several 
probable causes could apply to the same image set. The 
causative factors have been classified as:

1. Technical – errors related to slide preparation or dig-
itization such as differences in staining quality, inten-
sity, artifacts, low quality or out of focus scanning, 
etc.

2. Missing Specificity/Sensitivity – False negatives may 
be due to insufficient sensitivity, with the algorithm 
attributing a low score to a true ganglion cell. False 
positives may be due to insufficient specificity, with 
the algorithm attributing a high score to an item that 
resembles, yet is not a ganglion cell.

3. New/abnormal findings – errors related to the pres-
ence of tissues and entities the algorithm had not 
been exposed to during its creation and training. 
Examples may include normal tissue, such as squa-
mous mucosa in the anal canal, or pathological find-
ings such as heavy inflammation or adjacent tumoral 
tissue.

4. Unknown – errors for which no specific contributing 
factor could be defined.

Color distribution analysis
To better understand the similarities and differences 
demonstrated in the performance of the DSA with dif-
ferent medical centers and scanner models, we explored 
basic differences in the behavior of the color distribu-
tions of the final images.

Differences in color and contrast were assessed sep-
arately for the various medical centers and different 
scanner models.

For the different medical centers, similar images were 
chosen from each. The images included similar features 
and structures. An RGB histogram was constructed 
for each image, depicting the percentage of pixels cor-
responding to each value in the R, G and B channels 
separately.

For the different scanner models, the assessment was 
conducted at the scale of both a single image and a com-
plete case.

Single image level—images of the same area from the 
same slide (scanned by all three scanners) were com-
pared. The images were chosen specifically due to hav-
ing a disparity in color or contrast, apparent to a human 
observer. RGB histograms were constructed for each 
image.

Case level – two cases, which were scanned by all three 
scanners were chosen for the analysis. Each case included 
a total of 12 image sets with 3 images each. A RGB histo-
gram was constructed based on the average distribution 
of each color channel pixel value of all 36 images from 
each case.

Statistical analysis and metrics
A chi-square test of independence has been performed 
to compare rates and types of errors between the various 
medical centers and scanner models. Statistical signifi-
cance was defined as p < 0.05.

RGB histograms were compared using the  L2 metric for 
Euclidean distance (squared) along with normalization of 
each histogram (to sum up to 1).

Results
The DSS was able to correctly identify ganglion cells in 
nearly all of the cases, which were indeed positive for 
ganglion cells. In the cohort scanned at Center D, by 
the Philips IntelliSite Ultra-Fast Scanner, the DSS was 
able to correctly identify 39 out of 40 cases in which 
ganglion cells were indeed present (97.5%), with three 
cases requiring expert consultation. The DSS was 
able to correctly identify 100% of the cases positive 
for ganglion cells from Center A (28 cases, one refer-
ral), Center B (20 cases, no referrals) and Center C (37 
cases, no referrals). When examining all cases, after 
referrals, only a single case out of 125 ganglion posi-
tive cases was misclassified, meaning 99.2% of all cases 
were correctly classified post referrals (compared to 
96% pre-referrals). Of note, this is also the rate of cor-
rect identification for slides scanned by the Philips—
IntelliSite Ultra-Fast Scanner. The total number of 
cases, presence or absence of disease and DSS perfor-
mance for each cohort are summarized in Table 2.

When applied to slides scanned by different slide scan-
ners, the DSS was able to correctly identify 100% of the 
ganglion cell positive cases which were scanned by the 
Hamamatsu Nanozoomer S210 slide scanner (30 cases, 
2 referrals) and 95.5% of the ganglion cell positive cases 
which were scanned by the Panoramic 250 flash III slide 
scanner (21 out of 22 cases, 2 referrals).
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Further analysis was conducted at the level of the 
image-sets instead of complete cases. False positives and 
false negatives (discordance between the pathologist and 
DSA scores) were analyzed with sub-classification of the 
probable causes for error.

The sub-classification for false positives and false nega-
tive is summarized in Table 3.

The lowest total error rate was found in Center D 
(3.9%) compared to Centers A-C (7.1%, 10.8%, 6%, 
respectively, p = 0.00284). Of note, Center D provided 
the original data used for the construction and train-
ing of the algorithm. Interestingly, the vast majority 
of errors in Center D were false positives (3.45% vs 
0.45% false negatives), while in the other centers the 
opposite was true with a higher rate of false negatives 
in relation to false positives (6.81% vs 0.29%, 9.8% vs 
1.2% and 5.37% vs 0.63% for centers A-C, respectively, 
p < 0.0001). The relatively high number of false positives 
in Center D is attributed mainly to the cutoffs that were 
set for the DSA. The DSA is part of a decision support 
system and is designed to present the pathologist with 
the best ganglion cell candidates. Therefore, a false 
positive, which could often be easily dismissed by the 
pathologist, is not as concerning as the possibility of 
missing a true ganglion cell within the sample (a false 
negative). The cutoffs were adjusted appropriately, to 

favor sensitivity over specificity, and result in a greater 
proportion of false positives in relation to false nega-
tives. However, the same cutoffs do not appear to be 
sufficient for the other medical centers, which differ in 
slide preparation and staining, resulting in lower sen-
sitivity and a higher proportion of false negatives. Of 
note, most false negatives occurred on image sets with 
significant irregularities in staining intensity, contrast 
or focus, which were evident to the pathologist (Fig. 5). 
These changes did not prevent correct classification by 
the pathologist, yet appear to have a more pronounced 
effect on the DSA.

A similar analysis for false positives and false negatives 
has been performed for each slide scanner. The results 
are summarized in Table 4.

The total error rate was similar between the Philips 
and Hamamatsu brand slide scanners. The 3DHISTECH 
brand scanner showed a higher total error rate (9.8%) 
compared to the Hamamatsu (3.2%, p = 0.00023) and 
Philips (3.9%, p = 0.000061) brand scanners. However, 
the rate of false positives and false negatives for the 
3DHISTECH and Philips brand slide scanners were simi-
lar and not statistically significant (p = 0.074). The Hama-
matsu brand scanner had a higher rate of false negatives 
but the total number of errors was low and the difference 
in absolute numbers is small.

Table 2 Summary of the number of cases, HSCR status and DSS performance metrics from each medical center

Cohort Total number of 
cases

HSCR non‑HSCR Correct classifications Incorrect 
classifications

Referrals

Center A 49 21 28 49 0 1

Center B 29 9 20 29 0 0

Center C 49 12 37 49 0 0

Center D 59 20 39 58 1 3

Total (all centers) 186 62 124 185 1 4

Table 3 Summary of total error, false negative and false positive rates for the four medical centers, and sub‑classification of false 
positives and false negatives by possible causative factors (with % of the total errors of each type—false positives or false negatives)

Cohort Image set total Total errors (False 
positive and false 
negative)

Error type Total (% of 
image set 
total)

Technical Missing 
Specificity/
Sensitivity

New/
abnormal 
findings

Unknown

Center A 675 48 (7.1%) False positive 2 (0.29%) 0 (0%) 0 (0%) 2 (100%) 0 (0%)

False negative 46 (6.81%) 28 (60.9%) 17 (37%) 0 (0%) 1 (2.2%)

Center B 417 46 (11%) False positive 5 (1.2%) 0 (0%) 5 (100%) 0 (0%) 0 (0%)

False negative 41 (9.8%) 25 (61%) 16 (39%) 0 (0%) 0 (0%)

Center C 465 28 (6.0%) False positive 3 (0.63%) 0 (0%) 3 (100%) 0 (0%) 0 (0%)

False negative 25 (5.37%) 22 (88%) 2 (8%) 0 (0%) 1 (4%)

Center D 667 26 (3.9%) False positive 23 (3.45%) 0 (0%) 20 (87%) 3 (13%) 0 (0%)

False negative 3 (0.45%) 0 (0%) 3 (100%) 0 (0%) 0 (0%)
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When comparing the effects of the different medical 
centers and scanners on the error rates of the DSA, the 
difference in total error rates was not statistically signifi-
cant. However, errors associated with different medical 
centers were mainly false negatives, whereas errors asso-
ciated with different scanners were mainly false positives 
(p < 0.00001). This suggests that training of the DSS with 
data from additional medical centers may contribute 
to its sensitivity and aid in reducing false negatives. On 
the other hand, data from different scanners may help 
improve the specificity of the DSA and reducing false 
positives.

Inspection of images of similar elements (ganglion 
cells, nerves, muscles, etc.) from each medical center, 
revealed significant differences in color, resolution and 

texture, apparent even to the naked eye. An RGB distri-
bution histogram further demonstrated the differences 
in color distribution, possibly due to differences in pro-
cessing and staining between the four medical centers 
(Fig.  6). A similar analysis has also been performed for 
the different scanners on a single slide (Fig. 7) as well as 
on two whole cases (Fig. 8) with differences likely attrib-
uted to differences in resolution, contrast and scanning 
protocols.

Among the different medical centers, the image from 
Center B showed the narrowest distribution with high 
and narrow peaks towards the higher end of each color 
channel pixel value. The image from Center C showed 
the greatest distribution with lower peaks and a greater 
pixel value range. Note, however, that the images were 

Fig. 5 Several examples of images from Medical centers A (a,d), B (b,e) and C (c,f ), which yielded a false negative result (DSA score ≤ 0.3, pathologist 
score = 5). The images include ganglion cells, however, confounding technical factors are present such as a faded image with low contrast (a, b, e), 
overstaining (c), poor resolution and focus (d) and artifactual changes (f)

Table 4 Summary of total error, false negative and false positive rates for the three scanner brands, and sub‑classification of false 
positives and false negatives by possible causative factors (with % of the total errors of each type—false positives or false negatives)

Scanner (by 
manufacturer)

Image set total Total errors (False 
positive and false 
negative)

Error type Total (% of 
image set 
total)

Technical Missing 
Specificity/
Sensitivity

New/
abnormal 
findings

Unknown

Hamamatsu Pho‑
tonics

348 11 (3.2%) False positive 3 (0.9%) 2 (66.7%) 1 (33.3%) 0 (0%) 0 (0%)

False negative 8 (2.3%) 0 (0%) 7 (87.5%) 1 (12.5%) 0 (0%)

3D Histech 447 44 (9.8%) False positive 40 (8.9%) 7 (17.5%) 10 (25%) 0 (0%) 23 (57.5%)

False negative 4 (0.9%) 0 (0%) 4 (100%) 0 (0%) 0 (0%)

Philips 667 26 (3.9%) False positive 23 (3.45%) 0 (0%) 20 (87%) 3 (13%) 0 (0%)

False negative 3 (0.45%) 0 (0%) 3 (100%) 0 (0%) 0 (0%)
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chosen to include similar elements but are not from the 
same slides. Therefore, the specific elements present and 
their relative quantity in each image may have a signifi-
cant effect on RGB distribution, in addition to any effects 
attributed to differences in staining and slide preparation.

When examining the RGB histograms for the different 
scanners, generally, images scanned by the Hamamatsu 
and Philips brand scanners showed relatively similar dis-
tributions of each color channel pixel value, while the 
3DHISTECH slide scanner trended towards a greater 
distribution of color values than the other scanners, with 
relatively reduced "peaks", meaning there was a greater 
variance in color pixel values with less pixels at each spe-
cific value. This pattern was evident when comparing a 
single image of the same area from a single slide (scanned 
on each of the scanners) and was even more pronounced 
when examining the average distribution of all 36 images 
for an entire case. Calculation of the Euclidean distance 
between the histograms revealed a Euclidean distance of 
0.0040 between the Philips and Hamamatsu brand scan-
ners, versus a Euclidean distance of 0.0074 (85% greater) 
between the Philips and 3DHISTECH brand scanners. 
These metrics further demonstrate the observable differ-
ences between the RGB histograms of the different scan-
ner brands, as described.

Discussion
Decision support systems and algorithms used in digi-
tal pathology require a certain degree of robustness and 
generalizability in order to be appropriate for clinical use. 
Demonstration of this robustness usually requires valida-
tion on datasets obtained from multiple centers. Valida-
tion is necessary in order to account for pre-analytical 
sources of variation, such as tissue handling, slide prepa-
ration, staining, scanner model and scanning protocol 
[27–31]. The variation in staining and fixation between 
different laboratories may be significant even if the inter-
nal quality control of each center is maintained. These 
differences must be accounted for during the develop-
ment and validation of the algorithm [32]. The digitiza-
tion process is also subject to pre-analytic sources of 
variation such as scanner-to-scanner differences in color 
calibration, image resolution, focus and magnification. 
These differences have been shown to have an observable 
impact on algorithms applied to digital slides [33]. The 
amount and variability of the data provided during the 
development of the algorithm should be representative of 
the data encountered in clinical practice. The number of 
medical centers or different scanners required to achieve 
this representability depends on the diagnostic question 
and has been poorly explored in the literature [34, 35]. 

Fig. 6 Microphotographs of ganglion cells and their immediate surroundings from each medical center along with RGB histograms. The 
images demonstrate differences in color, resolution and texture with corresponding differences in each color channel pixel value distribution 
as demonstrated in the histograms (expressed as the percentage of pixels corresponding to each pixel value). Each set of image and histogram "a" 
through "d" corresponds to the different medical centers A through D, respectively
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Limited generalizability remains one of, if not the most 
important hurdle limiting the implementation of AI-
based support systems in clinical practice [36]. Several 
methods have been employed to account and correct for 
these variations. One approach is to introduce as much 
variability as possible in the provided data, but availabil-
ity may be limited. It is also possible to introduce artificial 
variability through color augmentation meant to mimic 
staining differences between different laboratories [20, 
36]. A different approach is normalization of the images 
to a common standard, an approach that was shown to 
improve performance even for algorithms developed on a 
limited dataset. Normalization may be conducted by sev-
eral different methods, including histogram-based color 
matching, normalization after stain separation and style 
transfer via neural network [37]. However, data derived 
from stains is stored in the combination of the three RGB 
channels. Therefore, normalization may cause distortions 
in the signals [38]. Furthermore, this approach generally 
requires applying the normalization process to each tar-
get image and may be costly in time and computational 

resources [39, 40]. AI methods may also assist in this 
process with tools designed to normalize stain and color 
[40–42] or provide more comprehensive quality control 
and standardization [43, 44].

The current study aimed to assess the robustness of a 
previously developed DSS designed to assist a patholo-
gist in the diagnosis of HSCR. However, HSCR is a rare 
disease with a worldwide incidence ranging from 1:5000 
and 1:10,000 live births [45]. Normally, the develop-
ment of a deep learning algorithm with clinically useful 
performance would require a large dataset, especially 
considering the need to account for the many sources of 
pre-analytic variation. Some researchers have even opted 
for especially large cohorts comprised of tens of thou-
sands of slides [7]. When dealing with rare diseases, this 
approach is far less feasible. Augmentation of the images 
or normalization can reduce the requirement, yet are 
insufficient on their own. For this reason, the algorithm 
(DSA) used in the DSS which was employed in the cur-
rent study, had been developed using a novel approach: 
"Hierarchical Contextual Analysis" (HCA) [12]. HCA 

Fig. 7 Microphotographs of the same ganglion cell containing area, scanned at each of the three different scanners, along with RGB histograms. 
The images demonstrate differences in contrast, color resolution and texture with corresponding differences in each color channel pixel 
value as demonstrated in the histograms (expressed as the percentage of pixels corresponding to each pixel value). Image and histogram set 
"a" corresponds to the Panoramic 250 flash III slide scanner (3DHISTECH), set "b" corresponds to the Nanozoomer S210 (Hamamatsu), set "c" 
corresponds to the IntelliSite Ultra‑Fast Scanner (Philips)
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attempts to mimic the way in which a pathologist exam-
ines a given tissue (in this instance, colon) and makes the 
diagnosis (in this instance, HSCR). The "Hierarchical" 
component relates to the relative location and orienta-
tion of a given finding and their meaning. For example, 
a ganglion cell candidate detected in the epithelial layer 
would be excluded, as the algorithm determines its loca-
tion and crosses this information with the previously 
"learned" fact that the epithelial layer does not contain 
ganglion cells. The "Contextual" component relates to the 
immediate surroundings of a given finding. For instance, 
the fact that ganglion cells tend to appear in clusters and 
along with nerve fibers is considered when assessing any 
given ganglion cell candidate [12]. Using HCA allowed 
for the construction of a potent algorithm-assisted tool 
from a limited dataset. It is imperative to note, that the 
DSS is meant to assist and not replace the pathologist. 
The use of algorithm-assisted tools has been shown to 

decrease human error and provide better overall perfor-
mance than either the pathologist or the algorithm alone 
[46, 47].

In the current study, we aimed to assess the robust-
ness of the same algorithm by applying it to datasets 
from different medical centers and scanned with differ-
ent slide scanners. All of the data used to construct the 
original algorithm had been from a single medical center 
with only a case-by-case variation to contend with. No 
AI or other computational tools were used to introduce 
artificial variance or perform any significant normaliza-
tion of the dataset. Before attempting to assess the algo-
rithm, additional data, from the other medical centers 
was used. However, only two cases from each additional 
medical center had been reviewed and integrated into the 
algorithm to account for the variability in staining, fixa-
tion or any other factors introduced. All slides, from all 
medical centers were scanned on a single scanner model 

Fig. 8 RGB histograms based on the average color pixel value distribution of 36 images from two cases, each scanned by three different slide 
scanners: the 3DHISTECH Panoramic 250 flash III slide scanner (histograms a and d), the Hammatsu Nanozoomer S210 (histograms b and e) 
and the Philips IntelliSite Ultra‑Fast Scanner (histograms c and f ). Greater similarities are noted between the Hamamatsu and Philips slide scanners, 
with peaks at similar color pixel values and relatively small variance in amplitudes. The 3DHISTECH slide scanner shows a greater distribution of color 
pixel values with lower peaks, accordingly
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(Philips—IntelliSite Ultra-Fast Scanner). Despite this 
extremely limited addition of data, the algorithm and by 
extension the DSS was able to correctly identify all of the 
cases, from medical centers A-C, which were positive for 
ganglion cells with 100% sensitivity (For center D the sen-
sitivity was 97.5%). Moreover, no additional data and no 
form of normalization or correction have been applied 
(externally) to the slides scanned by the Panoramic 250 
flash III and Hamamatsu Nanozoomer slide scanner, and 
yet, the algorithm was able to identify all of the cases 
which were positive for ganglion cells with 100% sensitiv-
ity. Of note, the current study only examined slides which 
were either created in a different laboratory or scanned 
with a different scanner model (using locally produced 
slides), but none with both parameters. Future works 
should include cases from different centers, which were 
also scanned by a different scanner model.

An additional, more in-depth analysis has been per-
formed at the level of the image sets rather than complete 
cases. The analysis included the rate and possible causes 
of false positive and false negative results for each medi-
cal center and scanner included in this study. While the 
current study was not designed for a thorough analysis 
on an image-to-image basis, the results highlight several 
trends.

False negatives results were most commonly attributed 
to "technical" factors, across all four medical centers and 
regardless of the scanner model used. Factors such as dif-
ferences in staining intensity, color, artifacts and scanning 
resolution and focus, appear to affect the DSA’s ability to 
correctly identify a ganglion cell, to a greater degree than 
these same factors might affect a trained human observer 
[48]. Additional samples for training and validation of the 
DSA may further improve its performance and minimize 
the effects of technical factors.

Center D showed the lowest rate of false negatives 
among all medical centers. This trend was expected, as 
the DSS was created and trained on data from Center 
D, and therefore would be expected to perform better 
under the same conditions. Artifactual changes common 
to Center D will have been presented to the DSS during 
its past training and will be more easily ignored, when 
compared to similar changes from other medical centers, 
which may be accompanied by additional differences in 
processing, staining and slide preparation.

Additionally, the DSS appears to display "overconfi-
dence" when attributing scores to image sets from Center 
D, with higher overall scores attributed to the images 
(compared to the other centers) including images which 
were negative for ganglion cells, resulting in a relatively 
higher rate of false positives. It should be noted however, 
that such false positives are easily dismissed by a trained 
pathologist. The purpose of the DSS is to find and present 

the best ganglion cell candidates to the pathologist, it is 
therefore under-representation and failure to present 
a false negative which may result in failure to identify a 
ganglion cell present in the sample, while over-represen-
tation and the inclusion of false positives should have no 
bearing on the final diagnosis made by the pathologist.

Images obtained from the different medical centers 
demonstrated differences in staining intensity and con-
trast, often at a degree noticeable by a human observer 
(pathologist). RGB histograms comparing similar images 
between the four medical centers demonstrated sig-
nificant variability in color pixel values for all three RGB 
channels.

The analysis of image sets obtained from the three dif-
ferent scanner brands revealed a higher total error rate 
for the 3DHISTECH brand scanner when compared to 
the Hamamatsu and Philips brand scanners. However, 
the rates of false positives and false negatives was simi-
lar for both the Philips and 3DHISTECH brand scanners, 
as opposed to the great disparity in the relative rates of 
false positives and false negatives seen with the different 
medical centers. The results suggest that the DSA is more 
sensitive to differences in slide preparation and staining 
than to differences resulting from the scanning and digi-
tization process employed by each scanner model.

RGB histograms comparing a specific area from a sin-
gle slide among all three scanners were constructed and 
demonstrate a similar distribution of each color channel 
pixel value for the Philips and Hamamatsu brand slide 
scanners, while the 3DHISTECH brand slide scanner 
showed a greater distribution of color pixel values (less 
pixels at each pixel value, with a wider range of pixel val-
ues) for all three RGB channels. The exact cause of these 
differences between images produced by the different 
scanner models is likely technical, yet beyond the scope 
and aim of the current study. We are, however, able to 
confirm that such differences are present and are sig-
nificant enough to be reflected in the final images as well 
as within the RGB histograms, including significant dif-
ferences in the Euclidean distance when comparing the 
histograms for the Philips brand scanner to those of the 
Hamamatsu and 3DHISTECH brand scanners.

Conclusions
The results of this current study are suggestive of the 
robustness of the algorithm and demonstrate the strength 
of HCA as a method to create powerful, effective and 
robust algorithm-assisted decision support systems even 
with a limited data set. HCA and similar techniques 
may prove invaluable for the development of algorithms 
involving rare diseases, for which quality data is inher-
ently limited. Nonetheless, we recommend including 
data from as many different laboratories and scanner 
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models as possible as part of the validation process of any 
given algorithm-based decision support system. Further 
research would be required to establish the applicability 
of HCA with shifting domains and classifiers.

Additionally, our results suggest that data from various 
medical centers would likely provide a great contribu-
tion towards reducing the rate of false negatives whereas 
data from different scanners may assist in slightly reduc-
ing false positives. Further studies should evaluate these 
observations in larger cohorts and different use cases.
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