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Abstract
Background  Catenin (Cadherin-Associated Protein), Beta 1 (CTNNB1) genomic alterations are rare in prostate cancer 
(PCa). Gain-of-function mutations lead to overexpression of β-catenin, with consequent hyperactivation of the Wnt/β-
catenin signaling pathway, implicated in PCa progression and treatment resistance. To date, successful targeted 
treatment options for Wnt/β-catenin - driven PCa are lacking.

Methods  We report a rare histologic transformation of a CTNNB1 (β-catenin) mutated metastatic castration 
resistant prostate cancer (mCRPC), clinically characterized by highly aggressive disease course. We histologically 
and molecularly characterized the liver metastatic tumor samples, as well as successfully generated patient-derived 
organoids (PDOs) and patient-derived xenograft (PDX) from a liver metastasis. We used the generated cell models for 
further molecular characterization and drug response assays.

Results  Immunohistochemistry of liver metastatic biopsies and PDX tumor showed lack of expression of typical PCa 
(e.g., AR, PSA, PSAP, ERG) or neuroendocrine markers (synaptophysin), compatible with double-negative CRPC, but 
was positive for nuclear β-catenin expression, keratin 7 and 34βE12. ERG rearrangement was confirmed by fluorescent 
in situ hybridization (FISH). Drug response assays confirmed, in line with the clinical disease course, lack of sensitivity 
to common drugs used in mCRPC (e.g., enzalutamide, docetaxel). The casein kinase 1 (CK1) inhibitor IC261 and the 
tankyrase 1/2 inhibitor G700-LK showed modest activity. Moreover, despite harbouring a CTNNB1 mutation, PDOs 
were largely insensitive to SMARCA2/4- targeting PROTAC degraders and inhibitor.

Conclusions  The reported CTNNB1-mutated mCRPC case highlights the potential challenges of double-negative 
CRPC diagnosis and underlines the relevance of further translational research to enable successful targeted treatment 
of rare molecular subtypes of mCRPC.

Keywords  Prostate cancer, Metastatic castration-resistant prostate cancer (mCRPC), CTNNB1 mutation, Wnt/β-catenin 
pathway, Histologic transformation, Targeted treatment, CK1 inhibitors, Tankyrase inhibitors
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Background
Catenin (Cadherin-Associated Protein), Beta 1 
(CTNNB1) genomic alterations are rare in prostate 
cancer (PCa), being found in ∼3–5% of the cases [1, 2]. 
Gain-of-function CTNNB1 mutations lead to nuclear 
overexpression of β-catenin, which is a core component 
of the canonical Wnt/β-catenin pathway [3]. β-catenin 
plays a relevant role in PCa carcinogenesis, disease pro-
gression and therapy resistance [1, 4–9]. An epigenom-
ics and transcriptomics-based classification of metastatic 
castration resistant prostate cancer (mCRPC)-derived 
organoids, proposed four subgroups of mCRPC, includ-
ing a Wnt-driven subtype [10]. Three out of four patient-
derived organoids (PDOs) in the Wnt-driven subgroup 
harboured a missense hot spot mutation in CTNNB1, 
with concomitant increased messenger RNA (mRNA) 
expression [10]. Previous studies have shown that activa-
tion of the Wnt/β-catenin pathway confers resistance to 
treatment with androgen receptor (AR) pathway inhibi-
tors (ARPIs) and chemotherapy with docetaxel [6, 11–
16]. However, to date little is known about the biological 
disease course of PCa with Wnt//β-catenin pathway acti-
vation, and no molecularly targeted treatment strategies 
are available for these tumors. We report a case of rare 
histologic transformation of a CTNNB1-mutated meta-
static PCa, clinically characterized by a fulminant dis-
ease course. We, moreover, generated a 3D PDO as well 
as a patient-derived xenograft (PDX) from patient’s liver 
metastatic biopsy, characterized them histologically and 
molecularly, as well as used the generated cellular models 
to assess response to several standard and experimental 
drugs.

Methods
Patient-derived organoids (PDOs)
3D organoids were derived following previously pub-
lished protocols [17]. Briefly, fresh tumor tissue was 
mechanically and enzymatically dissociated using colla-
genase type II at a concentration of 5 mg/ml (Gibco™, cat-
alog 17,101,015), supplemented with 10 µM of Y-27,632 
(Selleck Chemicals, catalog S1049). Tumor tissue was 
incubated during 1 h in collagenase II in a 1.5 ml tube and 
at 37 °C on a shaker. Following enzymatic digestion, dis-
sociated tumor tissue was washed in advanced DMEM/
F12 (Gibco™, catalog 12,634,010) supplemented with 
GlutaMax (Gibco™, catalog 35,050,061), Hepes (Gibco™, 
catalog 15,630,056) and penicillin-streptomycin (Gibco™, 
catalog 15,140,122) (adDMEM/F12 +++) and centri-
fuged for 5 min at 250G and 4 °C. 1 ml of TrypLE Express 
(Gibco™, catalog 12,605,028) with 10 µM Y-27,632 was 
added to the pellet for further digestion during approxi-
mately 15 min at 37°. Mixture was repetitively (ca. every 
5 min) pipetted up and down to ensure optimal dissocia-
tion. After washing with adDMEM/F12 +++, pellet was 

resuspended in undiluted ice-cold Matrigel and quickly 
placed as 40  µl Matrigel (VWR, catalog BDAA356239) 
droplets in the middle of a prewarmed 24-well cell cul-
ture plate (Corning, catalog 3526). To allow Matrigel 
solidification the plate was placed into cell culture incu-
bator at 37° for 10–15  min. Afterwards, prewarmed 
human prostate cancer medium was added, and changed 
every 3–4 days [17]. Growth of derived PCa organoids 
was monitored and they were passaged 1:2 every 7 to 14 
days.

Patient-derived xenograft (PDX)
PDOs from passage 6 were used for PDX generation. 
1.8 × 106 viable cells were injected subcutaneously (sc) in 
a 2-weeks old NOD scid gamma (NSG) male mouse. The 
mouse was regularly assessed for sc tumor growth (ini-
tially once weekly, and 2 times/week from detection of 
palpable tumor). Tumor would be allowed to grow to a 
maximum of 1 cm 3. All experiments were performed in 
agreement with local laws and regulations.

Immunohistochemistry (IHC)
IHC stainings were performed at the Translation 
Research Unit (TRU) of the Institute of Tissue Medi-
cine and Pathology, University of Bern, as well as at the 
Institute of Pathology of the Cantonal Hospital of St. Gal-
len. Staining was performed on formalin-fixed paraffin 
embedded (FFPE) PDX tumor slides. Slides were stained 
with H&E, as well as antibodies against AR, PSA, PSAP, 
synaptophysin, ERG, keratin 7 (KRT7), 34βE12 and 
β-catenin. Following antibodies have been used: anti-AR 
(AR441, Cell Marque™, catalog 200  M-15, 1:100), anti-
PSA (polyclonal rabbit, Dako, catalog A0562, 1:4000), 
anti-PSAP (PASE/4LJ, Dako, catalog M0792, 1: 2000), 
anti-synaptophysin (27G12, Novocastra, catalog NCL-
L-SYNAP-299, 1:100), anti-ERG (EP111, Dako, catalog 
M73149, 1:50), anti-human KRT7 (OV-TL 12/30, Cell 
Marque™, catalog 307 M-96, 1: 800), anti-34βE12 (Dako, 
catalog M0630, 1: 200), β-catenin (Abcam, catalog 
ab35572, 1:2000).

DNA sequencing
DNA was extracted from fresh-frozen liver metastatic 
tumor tissue with using the AllPrep DNA/RNA FFPE kit 
(Qiagen, catalog 80,234), and DNA concentration mea-
sured with Qubit (Thermo Fischer Scientific). Hybrid 
capture-based next-generation sequencing (NGS) was 
performed using the commercially available Foundation-
One® CDx assay, which interrogates 324 genes for substi-
tutions, indels and copy number variations, and 36 genes 
for rearrangements, as well as provides information 
on tumor mutational burden (TMB) and microsatellite 
instability status [18].
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Fluorescent in situ hybridization (FISH)
FISH for the detection of the TMPRSS2/ERG rear-
rangement was performed at the Institute of Pathology, 
University Hospital Basel, Switzerland, using the com-
mercially available ZytoLight® ERG-dual color break apart 
probe (ZytoVision GmbH, Bremerhaven, Germany, cata-
log Z-2138-200), according to the manufacturer’s recom-
mendations. Signals were counted in at least 50 tumour 
nuclei using an epifluorescence microscope (Axioplan 2 
Imaging; Carl Zeiss, Oberkochen, Germany). FISH for 
ERG rearrangement was defined by the loss of one green 
signal (5′ probe) or as a separate green, and a separate 
orange signal in at least 15% of analyzed tumor cells.

Drug response assays
For drug response assays, PCa organoids were enzymati-
cally and mechanically dissociated, allocating 1000 cells/
well in previously Matrigel-coated 6-well-plate (Corn-
ing, catalog 3516), and cultivated for 24  h before drug 
treatment. Cell viability read-out with CellTiter-Glo® 3D 
Cell Viability Assay (Promega, catalog G9683) was per-
formed after 120 h of drug exposure. Drugs were tested 
in a range of concentrations 1nM -10 µM to determinate 
the IC50. Generated data were analyzed by GraphPad 
Prism®, and IC50 curves for tested drugs were generated 
using the log(inhibitor) vs. response curves. We assessed 
response to following drugs: enzalutamide (Selleckchem, 
catalog S1250), docetaxel (MedChem Express, catalog 
HY-B0011), CFI-402,257 (GLPBio, catalog GC18491), 
IC261 (MedChem Express, catalog HY-12,774), G007-LK 
(MedChem Express, catalog HY-12,438), iCRT14 (Med-
Chem Express, catalog HY-166,665), RCM1 (Sell-
eckchem, catalog S6898), AU15330 (synthesized by 
Genentech), A947 (synthesized by Genentech), FHD286 
(Genentech), ACBI1 (Boehringer Ingelheim) and VZ185 
(Boehringer Ingelheim).

Results
Clinical presentation
An 82-year-old patient was diagnosed with de novo meta-
static hormone-sensitive prostate cancer. His previous 
medical history included hypertension, dyslipidemia, 
and atrial fibrillation. Biopsy of the prostate revealed an 
adenocarcinoma Gleason score (GS) 4 + 4 = 8 with pro-
nounced cribriform growth pattern without neuroen-
docrine differentiation. The prostate-specific antigen 
(PSA) value at presentation was 304  µg/l. Conventional 
imaging with computer tomography (CT) of chest-abdo-
men and bone scan showed pelvic and abdominal lymph 
node metastases (M1a), with no signs of visceral or bone 
involvement. First-line treatment with a gonadotropin-
releasing hormone (GnRH) analogue and apalutamide 
was initiated. Radiotherapy to the prostate given low vol-
ume disease analog STAMPEDE trial was evaluated but 

rejected by the patient [19]. Under first-line treatment 
with GnRH and apalutamide, the PSA value dropped 
down to 0.04  µg/l. Two years after treatment initiation 
the patient reported intense fatigue, dysuria, and periph-
eral edema of the lower limbs. Laboratory values revealed 
a grade 1 increase of transaminases, an alkaline phos-
phatase of 288U/l and a lactate dehydrogenase of 646 
U/l, as well as a low PSA (0.1 µg/l) and elevated neuron-
specific enolase values (236  µg/l). CT imaging revealed 
local progression of the primary tumor infiltrating blad-
der and rectum and new extensive metastatic spread to 
the lung and liver. Liver biopsy was performed to assess 
small-cell transformation, revealing a highly proliferative 
high-grade adenocarcinoma with prominent nucleoli; 
no neuroendocrine features were observed. Based on 
the working current classification of advanced PCa, this 
tumor fits into a class of double-negative CRPC express-
ing neither AR or neuroendocrine features (personal 
communication PCF Pathology working group). The 
patient presented rapid clinical deterioration complicated 
with sepsis and leading to death one month later (Fig. 1).

Phenotypic and genomic characterization
While primary PCa tumor showed mucin-containing 
glandular formation, liver biopsy and PDX hematoxy-
lin and eosin (H&E) slides showed high-grade solid 
carcinoma with prominent nucleoli, lack of cribriform 
growth pattern, absence of acid mucin and no evidence 
of neuroendocrine features (Fig.  2). The liver metasta-
ses and PDX tumor histology slides were negative for 
AR, PSA, PSAP and ERG protein expression; the tumor 
strongly expressed KRT7 and focally 34βE12 (Fig.  3). 
To help exclude a urothelial carcinoma keratin 34βE12 
was performed, resulting in focal positivity (Fig.  3A-B) 
[20]. β-catenin IHC nuclear staining was strongly posi-
tive in the derived PDX (UB_PCa03), as well as in the 
established Wnt-dependent PCa PDO WCM1078 [10] 
(Fig. 4A-B). On the contrary, in the neuroendocrine PDO 
PM154, β-catenin staining was uniquely cytoplasmatic, 
acting as a negative control (Fig.  4C). Targeted DNA 
NGS (FoundationOne®CDx) performed from the liver 
metastatic biopsy material uncovered a hotspot CTNNB1 
gain-of-function mutation in exon 2 (94G > A, D32N), as 
well as a loss-of-function mutation in TP53 (R282W), 
along with PTEN loss and a TMPRSS2 rearrangement 
(with unclear partner). The tumor molecular burden was 
low (2.4 mutations/megabase) and the microsatellite sta-
tus stable (Fig.  5A, Suppl. Table 1). The presence of an 
ERG rearrangement was confirmed by FISH on the PDX 
histology slides, showing a split signal in 92% of the ana-
lyzed tumor cells (Fig. 5B).
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Patient-derived organoids and xenografts
3D PDOs (UB_PCa03) were derived from fresh liver 
metastatic tumor tissue, following the protocol described 
in the Methods section, and could be successfully used 
for drug response assays (Fig.  6A). Por PDX derivation, 
1.8 × 106 viable cells (passage 6), were sc injected in an 
NSG male mouse. Palpable sc tumor was first detected 
at day + 16, reaching maximum volume at day + 35 
(Fig. 6B-D).

Drug vulnerabilities
We used the generated PDOs to assess sensitivities to 
several drugs of interest, including drugs commonly 
used in mCRPC, as well as selected experimental agents 
potentially targeting the Wnt/β-catenin pathway. As pre-
dicted by the patient disease course, PDOs showed lack 
of sensitivity to treatment with ARPI (enzalutamide), as 
well as chemotherapy with docetaxel. Among the experi-
mental drugs potentially targeting the Wnt/β-catenin, 
we assessed response to the spindle assembly check-
point kinase inhibitor (TTKi) CFI-402,257 [21], the 
casein kinase 1 (CK1) inhibitor IC261 [22], the tankyrase 
1/2 inhibitor G007-LK [23, 24], the forkhead box M1 
(FOXM1) inhibitor RCM1 [6], the Wnt/β-catenin inhibi-
tor iCRT14 [25]. Due to the implications of SWI/SNF 

complex-targeting agents in AR-driven PCa [26] and 
Wnt-driven PCa [16] fxc, we included the BRD9 and 
BRD7 proteolysis-targeting chimera (PROTAC) degrader 
VZ185 [27, 28], the PROTAC degraders of SMARCA2 
and SMARCA4 (subunits of the SWI/SNF complex) 
AU15330, A947, ACBI1, and the dual SMARCA4/
SMARCA2 inhibitor FH286. Within the assayed drugs, 
uniquely the targeted treatment with IC261 (IC50 = 0.47 
µM) and G007-LK showed a modest effect on PDOs via-
bility (Suppl. Figure 1). For enzalutamide and docetaxel, 
results were compared with sensitivities of two estab-
lished PCa PDOs (MSKPCa8 and PM154) (Suppl. 
Figure 2).

Discussion
We report a rare transformation of a metastatic PCa, 
acquiring histological features of urothelial carci-
noma, atypical IHC pattern and a highly aggressive 
disease course. However, DNA NGS from liver meta-
static biopsies revealed, along with the clonal CTNNB1 
gain-of-function mutation (D32N), molecular find-
ings characteristic for PCa, such as the presence of a 
TMPRSS2 rearrangement, a loss-of-function mutation 
in TP53 (R282W), and PTEN loss. FISH performed on 
PDX tumor material could confirm the presence of the 

Fig. 1  Schematic illustration of patient’s clinical disease course. (A) Timeline showing disease course and received treatment lines; (B) PSA levels over dis-
ease course; (C) Computed tomography image of liver metastatic spread (yellow arrow shows liver metastases). GnRH: gonadotropin-releasing hormone; 
mHSPC: metastatic hormone-sensitive prostate cancer; PSA: prostate-specific antigen
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TMPRSS2: ERG rearrangement, reassuring the final diag-
nosis of PCa metastases. In line with patient aggressive 
clinical disease course, derived PDOs showed lack of 
sensitivity to common drugs used for mCRPC, such as 
enzalutamide and docetaxel. We further assessed sensi-
tivity to several experimental drugs with potential activ-
ity in tumors with Wnt/β-catenin pathway activation. 
Our preliminary drug response results showed only mod-
est sensitivity to treatment with the CK1 inhibitor IC261 
and the tankyrase inhibitor G007-LK, which are known 
to interfere with Wnt/β-catenin signaling in PCa [7]. 
Further experiments would be required to confirm these 
findings. CK1α phosphorylates β-catenin and induces its 
degradation, so that inhibition of CK1α leads to an exces-
sive Wnt/β-catenin activation 3,29. Moreover, both CK1α 
and CK1δ phosphorylate the Wnt co-receptor low-den-
sity lipoprotein receptor-related protein 6 (LRP6), result-
ing again in Wnt/β-catenin pathway activation [29, 30]. 
IC261 inhibits CK1δ, CK1ε and CK1α, therefore, hav-
ing potential impact on the WNT/β-catenin signaling. 
However, further work showed that IC261 may induce 
Wnt-independent cancer cell death, contrary to other 
CK1δ/ε inhibitors [22]. Tankyrase 1/2 inhibitors lead to 
decreased degradation of axin, a negative regulator of the 

Wnt/β-catenin promoting β-catenin degradation [31]. 
Based on previous data showing that BRG1 (SMARCA4), 
a key component of the SWI/SNF chromatin remodel-
ing complex, plays a relevant role in the Wnt//β-catenin 
pathway regulation, we additionally aimed to assess sen-
sitivity to SMARCA2 and SMARCA4 PROTAC degrad-
ers and inhibitors [16, 32–34]. Moreover, increased 
Wnt//β-catenin signaling activity has been demonstrated 
in PCa tumors with high SMARCA4 levels [35]. How-
ever, none of the used drugs targeting the SWI/SNF com-
plex components SMARCA4 and SMARCA2 showed 
activity in the reported PDO.

Finally, the morphologic and molecular features of 
this double negative PCa highlight a challenge in the 
classification of advanced metastatic CRPC. Histology 
alone, unlike primary untreated PCa, is insufficient to 
adequately characterize these tumors. A recent working 
group on the pathology of CRPC is supporting a classi-
fication approach that includes morphology, molecular, 
and IHC information (Hafner, Rubin, Beltran, in prepa-
ration). For example, in this case high-grade adenocarci-
noma would be modified with the description of double 
negative CRPC referring to the lack of AR activity or 
neuroendocrine features; these features may only become 

Fig. 2  Hematoxylin and eosin (H&E) staining of (A) primary PCa tumor, (B) liver metastases and (C) patient-derived xenograft (PDX) tumor material. (A) 
Primary PCa tumor showing glandular formations with mucin; (B) Liver metastasis showing highly proliferative high-grade adenocarcinoma with promi-
nent nucleoli; no neuroendocrine features are observed; (C) PDX tumor material showing highly proliferative neoplasia, histologically similar to the liver 
metastatic biopsy
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apparent through molecular testing. The working group 
comprised of pathologists, oncologists, and a surgeon 
specialized in prostate cancer, noted that this informa-
tion may have important clinical treatment implications.

Conclusions
We characterized a rare histologic transformation of an 
advanced CTNNB1-mutated mCRPC, clinically char-
acterized by an aggressive lung and hepatic metastatic 
spread and fulminant disease course. We successfully 
derived PDOs and PDX from liver metastatic tumor 
material. Derived PDOs showed, as expected, lack of 

response to common drugs used in mCRPC, such as 
enzalutamide and docetaxel. Preliminary experiments 
showed only a modest sensitivity to the CK1 inhibitor 
IC261 and to the tankyrase inhibitor G007-LK, which are 
known to interfere with Wnt/β-catenin signaling. Fur-
ther research work is needed to explore the effect of these 
compounds in more detail. The reported mCRPC case 
underlines the need of further research work required to 
enable successful targeted treatment of rare molecular 
subtypes of PCa.

Fig. 3  Immunohistochemistry (IHC) stainings of liver metastatic biopsy material and PDX histology slides. (A) Strongly positive IHC staining for KRT7, 
negative IHC for PSA and high Ki-67 index (90–95%), liver metastatic biopsies. (B) strongly positive IHC staining for KRT7 and focally positive for 34βE12, 
PDX tumor; (C) Negative IHC stainings on PDX tumor for AR, PSA PSAP, synaptophysin and ERG. 34βE12: cytokeratin 34βE12; AR: androgen receptor; KRT7: 
keratin 7; ERG: ETS-related gene; PSA: prostate-specific antigen; PSAP: prostate-specific acid phosphatase
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Fig. 4  IHC staining for β-catenin in derived PDX (UB_PCa03) and two other Wnt-dependent established PDOs. Strong nuclear positivity for β-catenin 
staining is observed in the reported PDX UB-PCa03 (A), as well as in the established Wnt-dependent PDO WCM1078 (B). The neuroendocrine PDO PM154 
(C) shows uniquely cytoplasmatic staining for β-catenin, as negative control

 



Page 8 of 10Akhoundova et al. Diagnostic Pathology           (2024) 19:83 

Fig. 5  Next-generation sequencing (NGS) and fluorescent in situ hybridization (FISH) for TMPRSS2/ERG rearrangement. (A) NGS (FoundationOne® CDx) 
results from liver metastatic biopsy. (B). FISH confirming presence of the ERG rearrangement in 92% of the analyzed cells on PDX histologic material. MS: 
microsatellite; TMB: tumor mutational burden
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