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Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor. It is estimated that approximately 50–80% of HCC cases 
worldwide are caused by hepatitis b virus (HBV) infection, and other pathogenic factors have been shown to 
promote the development of HCC when coexisting with HBV. Understanding the molecular mechanisms of HBV-
induced hepatocellular carcinoma (HBV-HCC) is crucial for the prevention, diagnosis, and treatment of the disease. 
In this study, we analyzed the molecular mechanisms of HBV-induced HCC by combining bioinformatics and 
deep learning methods. Firstly, we collected a gene set related to HBV-HCC from the GEO database, performed 
differential analysis and WGCNA analysis to identify genes with abnormal expression in tumors and high relevance 
to tumors. We used three deep learning methods, Lasso, random forest, and SVM, to identify key genes RACGAP1, 
ECT2, and NDC80. By establishing a diagnostic model, we determined the accuracy of key genes in diagnosing 
HBV-HCC. In the training set, RACGAP1(AUC:0.976), ECT2(AUC:0.969), and NDC80 (AUC: 0.976) showed high 
accuracy. They also exhibited good accuracy in the validation set: RACGAP1(AUC:0.878), ECT2(AUC:0.731), and 
NDC80(AUC:0.915). The key genes were found to be highly expressed in liver cancer tissues compared to normal 
liver tissues, and survival analysis indicated that high expression of key genes was associated with poor prognosis 
in liver cancer patients. This suggests a close relationship between key genes RACGAP1, ECT2, and NDC80 
and the occurrence and progression of HBV-HCC. Molecular docking results showed that the key genes could 
spontaneously bind to the anti-hepatocellular carcinoma drugs Lenvatinib, Regorafenib, and Sorafenib with strong 
binding activity. Therefore, ECT2, NDC80, and RACGAP1 may serve as potential biomarkers for the diagnosis of HBV-
HCC and as targets for the development of targeted therapeutic drugs.
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Introduction
Hepatocellular carcinoma, as a malignant tumor, is the 
sixth most commonly diagnosed cancer and third leading 
cause of cancer-related deaths globally [1] and Rumgay 
et al. predicted that the incidence of liver cancer would 
increase by 55.0% and the number of deaths would 
increase by 56.4% between 2020 and 2040 [2]. Significant 
progress has been made in the epidemiology, risk factors, 
and molecular characteristics of HCC in many coun-
tries around the world over the past few decades. The 
main risk factors for hepatocellular carcinoma include 
chronic infection with hepatitis B virus (HBV) or hepa-
titis C virus (HCV), aflatoxin-contaminated food, heavy 
alcohol consumption, and type 2 diabetes. Chronic infec-
tion with hepatitis B virus (HBV) is considered a major 
risk factor for the occurrence and progression of HCC, 
accounting for more than half of global HCC cases [3]. In 
patients with hepatitis B, the incidence of hepatocellular 
carcinoma increases with viral load, duration of infec-
tion, and severity of liver disease [4]. Numerous studies 
have shown that the presence of other pathogenic factors 
in conjunction with HBV can increase the incidence of 
hepatocellular carcinoma [5].

HBV can increase the genomic instability of host cells, 
leading to epigenetic reshaping of host DNA, chromo-
somal reshaping, and abnormal expression of onco-
genes and tumor suppressor genes through integration 
or induction of host gene mutations. It can also induce 
malignant transformation of liver cells by activating vari-
ous cancer-related signaling pathways, regulating cell 
metabolism, and other mechanisms. The liver microenvi-
ronment undergoes changes induced by chronic inflam-
mation and interactions between the virus and innate 
immune cells, adaptive immune cells, helping the virus 
evade immune surveillance and promoting the progres-
sion of the disease from inflammation to tumor forma-
tion [5]. As a high-risk factor for inducing HCC, HBV 
influences the occurrence and progression of tumors. 
Therefore, further research on the molecular mecha-
nisms of HBV infection-induced HCC can help improve 
the prevention, diagnosis, and treatment of HCC.

With the continuous development of computer tech-
nology, artificial intelligence (AI) is also becoming 
increasingly mature. Machine learning, as a branch of AI, 
focuses on using mathematical algorithms to identify pat-
terns in data for prediction. Deep learning, as a subfield 
of machine learning, specifically utilizes multi-layer neu-
ral network algorithms inspired by the structure of the 
brain for prediction [6]. Due to the increasing availability 
and integration of various types of data such as genomics, 
transcriptomics, and pathology, cancer treatment is shift-
ing towards precision medicine. Deep learning models 
have the potential to identify relevant granular features 
from multiple data types. Deep learning is being applied 

in the diagnosis, prognosis, and treatment of tumors, 
providing meaningful insights [7].

In this study, we aim to analyze the pathogenic mech-
anisms of HBV-induced HCC using a combination of 
bioinformatics and deep learning methods. We seek 
to identify valuable diagnostic biomarkers and hope to 
provide new insights for the diagnosis and treatment of 
HBV-induced HCC.

Methods
Differentially expressed gene screening
Retrieve gene chip data with the keyword “HBV-HCC” 
from the National Center for Biotechnology Informa-
tion (NCBI) public Gene Expression Omnibus (GEO) 
platform (https://www.ncbi.nlm.nih.gov/geo/), download 
data with a sample size greater than 100, filter differen-
tially expressed genes using the R software by reading 
the downloaded matrix file, analyze the tumor group and 
control group using the “limma” package, obtain differ-
entially expressed genes (DEGs), and screen DEGs with 
criteria: |logFC|>2, P < 0.05.

Functional enrichment analysis
GO function enrichment analysis and KEGG pathway 
enrichment analysis were performed using the ' cluster-
Profiler ' package of R language to discover the biological 
functions and pathways that DEGS may be involved in. 
Both of them used P < 0.05 as the screening index.

WGCNA co-expression analysis
The ‘WGCNA ‘R package in R language was used to 
locate the co-expressed genes in the HBV-HCC data-
set.The sample clustering tree algorithm is used to 
eliminate outlier samples, and the pick Soft Thresh-
old function is used to select the best soft threshold β 
to ensure the construction of the scale-free network. 
The blockwiseModules function in the WGCNA pack-
age is used to construct the co-expression matrix. The 
merging threshold of similar modules is set to 0.25 
(mergeCutHeight = 0.25), the topological overlap matrix 
(TOM) is deepSplit = 1, and the minimum number of 
genes in each module is set to 30 (minModuleSize = 30). 
Other parameters are set according to the default setting. 
The samples in the data set were divided into control 
group and HBV-HCC group, and the modules with high 
correlation with tumors were screened out.

Screening and verification of diagnostic markers
The intersection genes of DEGS and WGCNA modules 
with high tumor correlation were screened out. Lasso 
regression, random forest and SVM-RF were used to 
screen the variables of the intersection genes, and the 
intersection of the variables screened by the three algo-
rithms was used as a preliminary diagnostic biomarker. 

https://www.ncbi.nlm.nih.gov/geo/
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The relationship between biomarkers and the survival 
and prognosis of patients with liver cancer was analyzed 
in the GEPIA2 database. The ‘RMS’ package was used to 
construct a nomogram model for the diagnosis of HBV-
HCC based on diagnostic biomarkers, and the clini-
cal decision curve (DCA) was drawn. The ROC curve 
of diagnostic biomarkers was calculated to analyze the 
accuracy of prediction.

Molecular docking
The 3D structure files of Lenvatinib, Regorafenib, 
and Sorafenib were obtained from the PubChem 
database(https://pubchem.ncbi.nlm.nih.gov/) Energy 
minimization was conducted using the Chem3D 2019 
software tool. The protein structure files were acquired 
from the PDB database(https://www.rcsb.org/)and pre-
processing steps such as removing water molecules and 
small molecule ligands were carried out using PyMol 
software. Subsequently, Autodock Vina was employed 
for molecular docking, and the outcomes were visualized 
using PyMol software.

Results
Differential gene screening results
Download gene array datasets GSE121248 and GSE55092 
from the National Center for Biotechnology Information 
(NCBI) public Gene Expression Omnibus (GEO) plat-
form (https://www.ncbi.nlm.nih.gov/geo/). After merg-
ing the datasets, a total of 119 samples of HBV-HCC and 
128 control samples were obtained. The merged data-
set was then used as a training set for gene differential 
analysis, resulting in 133 downregulated genes and 64 
upregulated genes. Subsequently, the dataset containing 

HBV-HCC-related data, GSE47197, was used as a valida-
tion set (Table 1, 2).

Co-expression gene identification results
WGCNA was used to locate co-expressed genes in the 
HBV-HCC dataset. The WGCNA co-expression net-
work was constructed after calculating the optimal soft 
threshold (β = 8 ) using the WGCNA package (Fig. 1B ). 
By analyzing the correlation between genes and pheno-
types, it was found that 518 genes in the black module 
and 102 genes in the cyan module were highly correlated 
with HBV-HCC. The correlation between the black mod-
ule and HBV-HCC was 0.79 (P < 0.001 ), and the correla-
tion between the cyan module and HBV-HCC was 0.77 
(P < 0.001 ) (Fig. 1E, F).

Screening results of diagnostic biomarkers
The differential genes were intersected with the genes 
highly related to HBV-HCC screened by WGCNA to 
obtain 14 genes. Random forest, LASSO and SVM _ RF 
are used for variable screening, and the important vari-
ables of each machine learning screening are sorted. 
After the importance of all variables is sorted by random 
forest, the importance of RACGAP1, ECT2 and NDC80 
is the first three (Fig. 2A, D). The variables retained in the 
LASSO regression after screening were ECT2, NDC80, 
CTNNA2, CCNB1, RACGAP1, VNN1, TMEM45E 
and ASPA ( Fig.  2B, E ). The most important variables 
selected by SVM _ RF were RACGAP1, ECT2, NDC80, 
CDC20 and CDK1 (Fig. 2C, F).

Core genes verification
The overlapping genes selected by the three machine 
learning methods were RACGAP1, NDC80, and ECT2 
(Fig.  3A). In the validation set, the mRNA expression 
levels of RACGAP1, ECT2, and NDC80 were higher in 
liver cancer tissues compared to normal liver tissues. 
Analysis based on the TCGA database in the GEPIA2 
database showed that the high expression of RACGAP1, 
ECT2, and NDC80 was associated with poor prognosis 

Table 1  GEO array data information
Group Data series Platforms Normal VS tumor
Training Data GSE121248

GSE55092
GPL570 128 VS 119

Validation Data GSE47197 GPL16699 63 VS 61

Table 2  List of differential genes
Status Gene symbol
Up CAP2, RACGAP1, HMMR, TOP2A, NDC80, MELK, ASPM, ECT2, PRC1, ROBO1, FAM72A, BUB1B, CDK1, CCNB1, BC017398, 

GPR158, FAM83D, KIF20A, RRM2, DNAJC6, PBKDTL, NCAPG, GINS1, NEK2, RBM24, E2F7, TTK, CDC20, DUXAP10, LOC344887, 
ZIC2, NUF2, COL15A1, TRIM16, CR936796, CRNDE, SULT1C2, GPC3, CD109, FAM133A, AK093362, SMPX, NRCAM, FGF13, 
SSX1, LOC101930288, MAGEA1, CTNNA2, SPINK1, AKR1B10, LCN2, GABBR1, REG3A, COX7B2, MAGEA12, DKK1, MAGEA3, 
LOC100506403, MAGEA6, ALDH3A1, LINC01419, GAGE1, GAGE12B

Down CLEC1B, FCN2, OIT3, CLEC4M, GPR128, CLEC4G, CXCL14, CYP26A1, CRHBP, LINC01093, RSPO3, FCN3 PLAC8, CDHR2, CCBE1, 
SLC25A47, CXCL12, FAM65C, LCAT MARCO, KCNN2, HAMP, CETP, GPM6A, CNDP1, TTC36, NPY1R, CYP39A1, RND3, CYP1A2, 
FOS, C8orf4, OLFML3, CD5L, HGF, GADD45B, IGFBP3, ESR1, IDO2, ZG16, FBP1, KMO, ASPA, IGHM, CA2, GCH1, SRPX, FOSB, NAT2, 
TBX15, ID1, HAO2, MT1F, CYP2B6, C7, LPA, SRD5A2, FREM2, BCO2, SPP2, DCN, IGJ, GRAMD1C, APOF, MT1H, MT1E, MT1G, IGF1, IL-
13RA2, CYP4A11, GHR, PGLYRP2, SLC22A1, AKR1D1, TMEM27, PLGLB1, IGH, IGF2, TDO2, EGR1, ADH4, HGFAC, ANXA10, CYP2C18, 
LOC101928916, COLEC11, MT1X, CLRN3, ID4, VNN1, FOLH1B, MT1M, TMEM45A, IGHG1, ALDOB, PRG4, CYP2B6, IGLV1-44, IGLC1, 
HSD17B2, C9, ATF5, FAM110C, ANK3, SLCO1B3, GBA3, GNMT, HAL, CYP2B7P, BBOX1, RDH16, CYP2A6, PCK1, FGFR2, C6, CNTN3, 
ACOT12, AFM, GYS2, CYP2C8, SLC51A, C3P1, SLC10A1, MBL2, ADH1A, CYP3A7, LECT2, H19, FABP1, LUM, EPCAM, HPGD, CYP2E1

https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/)an
https://www.ncbi.nlm.nih.gov/geo/
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in HCC patients (Fig.  4). A clinical diagnostic model 
for diagnosing HBV-HCC was constructed based on 
RACGAP1, ECT2, and NDC80, showing good model 
calibration curves (Fig.  3B). The decision curve analysis 
(DCA) demonstrated that patients could benefit from 
the clinical diagnostic model based on RACGAP1, ECT2, 
and NDC80 (Fig.  3C). A nomogram model based on 

RACGAP1, ECT2, and NDC80 was constructed and dis-
played as a calibration plot (Fig. 3D). In the training set, 
the AUC values for RACGAP1, ECT2, and NDC80 were 
0.979, 0.969, and 0.976, respectively (Fig. 3E); in the vali-
dation set, the expression levels of RACGAP1, ECT2, and 
NDC80 were higher in liver cancer tissues compared to 
normal liver tissues, with AUC values of 0.878, 0.731, and 

Fig. 1  WGCNA analysis results
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0.915, respectively (Fig. 3J), indicating that these diagnos-
tic biomarkers have high predictive accuracy and diag-
nostic value.

GO and KEGG enrichment analysis
The results of KEGG and GO enrichment analysis 
showed that the main enriched BPs were: nuclear chro-
mosome segregation, chromosome segregation and sister 
chromatid segregation (Fig.  5A).S indle, chromosome, 
centromeric region and condensed chromosome were 
the main enriched CCs (Fig.  5B). The main enriched 
pathways of MF were protein serine kinase activity, 
microtubule binding and protein tyrosine kinase activity 
(Fig.  5C). The main enriched pathways were cell cycle, 
p53 signaling pathway, FoxO signaling pathway and Viral 
carcinogenesis pathway, and most of the genes in most of 
the pathways were up-regulated (Fig. 5D, E).

Molecular docking
By molecular docking of the core targets related to HBV-
HCC with the commonly used drugs for anti-hepatocel-
lular carcinoma, it was found that the docking energy of 
the docking binding configuration was less than-5  kcal 
/ mol, which proved that the binding configuration had 
good activity (Table 3). Except that the binding energy of 

NDC80 and Lenvatinib is greater than-7 kcal / mol, the 
binding energy of other target proteins and drugs is less 
than-7 kcal / mol, which proves that the binding configu-
ration has strong activity (Fig. 6).

Discussion
Hepatocellular carcinoma (HCC) is the most common 
primary liver cancer and an important medical problem. 
The mortality rate has increased in recent years. [8]. As 
a major risk factor for the occurrence and progression 
of HCC, HBV infection poses a threat to human life and 
health. HBV infection can directly or indirectly pro-
mote hepatocellular carcinogenesis. At the genetic level, 
HBV can increase the instability of the host cell genome, 
cause epigenetic remodeling of the host DNA, and lead 
to chromosomal remodeling and abnormal expression of 
oncogenes and tumor suppressor genes by integrating or 
inducing host gene mutations. It can also activate various 
cancer-related signaling pathways, regulate cell metabo-
lism and other mechanisms to cause malignant transfor-
mation of liver cells. It is of great significance to study the 
specific mechanism of the occurrence and progression of 
HBV-HCC for its prevention and treatment. In the liver 
microenvironment, chronic inflammation induced by 
HBV infection, changes in the interaction between the 

Fig. 2  Variable screening and feature importance ranking
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virus and innate immune cells and adaptive immune cells 
help the virus evade immune surveillance and promote 
the evolution of the disease from inflammation to tumor 
formation [9]. Further study of the mechanism of HBV 
infection-induced HCC can provide reliable new ideas 
and methods for the prevention, diagnosis and treatment 
of HBV-HCC.

With the development of gene sequencing technol-
ogy and various deep learning algorithms, it provides a 
method for identifying new biomarkers in diseases. In 
this study, three deep learning methods, random forest, 
Lasso regression and SVM-RF, were used to identify the 
key genes RACGAP1, ECT2 and NDC80 in HBV-HCC-
related gene sequencing data. Through difference analy-
sis, it was found that they were highly expressed in tumor 
tissues compared with normal tissues. Survival analy-
sis showed that its high expression was associated with 
poor prognosis in patients with liver cancer. The selected 
three key genes were used to construct a clinical diagnos-
tic model. In the training set, the key genes showed high 
accuracy in the diagnosis of HBV-HCC, and also had 
good accuracy in the validation set. It can be concluded 
from the DCA curve that patients can get better benefits 
from the model. Lenvatinib, Sorafenib and Regorafenib 

are clinically used drugs for the systematic treatment of 
hepatocellular carcinoma, which can improve the sur-
vival and prognosis of patients with hepatocellular car-
cinoma [10]. Through molecular docking, it was found 
that the docking configurations of Lenvatinib, Sorafenib 
and Regorafenib with RACGAP1, ECT2 and NDC80 had 
strong activity, indirectly support that the 3 genes are 
likely key players in the oncogenesis/progression of HBV-
HCC, also indicating that the target may be a potential 
therapeutic target for hepatocellular carcinoma.

RACGAP1 is an important cellular protein. It is a 
GTPase-activating protein that acts on the Rho GTPase 
family. It belongs to the GTPase-activating protein fam-
ily and participates in many cellular processes, including 
cell division, transformation, and invasive migration [11], 
Studies have found that RACGAP1 is highly expressed 
in a variety of cancers, such as the poor prognosis and 
adverse clinicopathological features of gastrointestinal 
stromal tumors with high expression of RACGAP1 [12]. 
RACGAP1 can drive breast cancer metastasis by regulat-
ing ECT2-dependent mitochondrial quality control [13]. 
RACGAP1 is used as a biomarker for lymphatic metasta-
sis and poor prognosis of colon cancer [14]. In hepatocel-
lular carcinoma, high expression of RACGAP1 promotes 

Fig. 3  Core target protein expression and survival analysis
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Fig. 5  KEGG and GO enrichment analysis

 

Fig. 4  Core target screening and verification
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tumor progression, and studies have shown that up-regu-
lation of RACGAP1 is significantly associated with early 
recurrence of hepatocellular carcinoma [15, 16]. ECT2 
is a guanine nucleotide dissociation exchange factor. 
It is a high incidence area of chromosomal abnormali-
ties in malignant tumors. It is widely present in cells and 
tissues, and has the effects of regulating cell prolifera-
tion, apoptosis and DNA damage repair [17]. ECT2 has 
been reported to be overexpressed in a variety of human 
tumors, such as hepatocellular carcinoma [18], prostatic 
cancer [19], ovary carcinoma [20], oral cancer [21] And 

gastric cancer [22]. Promoting the expression of ECT2 
will enhance the proliferation of HCC cells and enhance 
the metastasis of cancer cells. [23, 24]. NDC80 is a core 
component of the outer kinetochore and mitogen regula-
tors and is involved in the migration, proliferation, inva-
sion and apoptosis of various types of tumor cells [25, 
26]. High expression of NDC80 enhances cisplatin resis-
tance in triple-negative breast cancer [27]. Overexpres-
sion of NDC80 can lead to decreased apoptosis of HCC 
cells and overcome cell cycle arrest to promote the devel-
opment of HCC and is associated with poor prognosis 

Table 3  Parameters of molecular docking box and docking binding energy
Target Ligand Grid center NPTs Binding energie
ECT2 Lenvatinib 59 72 72 -31.42 -20.35 -48.11 -7.3 (kcal/mol)
ECT2 Regorafenib 59 72 72 -31.42 -20.35 -48.11 -8.0 (kcal/mol)
ECT2 Sorafenib 59 72 72 -31.42 -20.35 -48.11 -8.5 (kcal/mol)
NDC80 Lenvatinib 36 47 31 3.74 27.09 44.14 -6.7 (kcal/mol)
NDC80 Regorafenib 36 47 31 3.74 27.09 44.14 -7.9 (kcal/mol)
NDC80 Sorafenib 36 47 31 3.74 27.09 44.14 -7.6 (kcal/mol)
RACGAP1 Lenvatinib 35 39 36 13.48 1.87 12.16 -7.6 (kcal/mol)
RACGAP1 Regorafenib 35 39 36 13.48 1.87 12.16 -9.3 (kcal/mol)
RACGAP1 Sorafenib 35 39 36 13.48 1.87 12.16 -9.1 (kcal/mol)

Fig. 6  Molecular docking results
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in HCC patients [26, 28]. According to the literature, the 
expression of RACGAP1 [29], ECT2 [22] and NDC80 
[30] can be detected in serum. This suggests that RAC-
GAP1, ECT2, and NDC80 have the potential to serve 
as serum biomarkers for diagnosing and monitoring the 
recurrence of HBV-induced HCC in future studies.

The p53 signaling pathway plays an important role in 
cell cycle regulation, metabolism, aging development, 
reproduction and inhibition of tumor expression [31–
33]. It has been found that p53, as a tumor suppressor, 
mutates or loses in nearly half of cancers. In the other 
half of the tumor, although the p53 protein is normal, the 
upstream regulatory factors and downstream mediators 
are disordered, resulting in the destruction of the entire 
p53 pathway [34]. Cell cycle is a highly regulated process 
that makes cell growth, genetic material replication and 
cell division possible. In the normal cell cycle, the expres-
sion of various cell cycle proteins is strictly regulated. 
However, in tumor cells, the mechanism of cell cycle reg-
ulation is disordered, resulting in abnormal activation of 
cyclins, which plays a pathogenic role in the development 
of most tumor types [35].

The results of GO enrichment analysis showed that 
the genes interacting with key genes RACGAP1, NDC80 
and ECT2 were mainly enriched in chromosome-related 
pathways. The p53 and cell cycle pathways mainly 
enriched by KEGG played an important role in the 
occurrence and progression of cancer. Previous studies 
have also shown that overexpression of RACGAP1, ECT2 
and NDC80 is associated with malignant progression and 
poor prognosis of HCC. Previous studies have shown 
that HBV leads to chromosomal remodeling and abnor-
mal expression of oncogenes and tumor suppressor genes 
by integrating or inducing host gene mutations. It can 
also activate various cancer-related signaling pathways 
to promote the occurrence and progression of cancer 
[3, 5]. The clinical prediction model for the diagnosis of 
HBV-HCC based on RACGAP1, ECT2 and NDC80 also 
showed good accuracy.

In summary, according to the results of machine learn-
ing and molecular docking, we speculate that HBV may 
induce gene mutations in RACGAP1, ECT2 and NDC80, 
affect the normal function of chromosomes, affect the 
normal regulation of p53 and cell cycle signaling path-
ways, and then lead to the occurrence and progression of 
HCC. Moreover, NDC80, RACGAP1 and ECT2 may be 
valuable diagnostic biomarkers for HBV-HCC and poten-
tial therapeutic targets.
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