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Abstract

In virtual microscopy, a sequential process of captures of microscopical fields, allows to construct a virtual slide
which is visualized using a specialized software, called the virtual microscopy viewer. This tool allows useful

exploration of images, composed of thousands of microscopical fields of view at different levels of magnification,
emulating an actual microscopical examination. The aim of this study was to establish the main pathologist's navi-
gation patterns when exploring virtual microscopy slides, using a graphical user interface, adapted to the patholo-
gist's workflow. Four pathologists with a similar level of experience, graduated from the same pathology program,
navigated six virtual slides. Different issues were evaluated, namely, the percentage of common visited image
regions, the time spent at each and its coincidence level, that is to say, the region of interest location. In addition,

navigation patterns were also assessed, i.e, mouse movement velocities and linearity of the diagnostic paths.
Results suggest that regions of interest are determined by a complex combination of the visited area, the time
spent at each visit and the coincidence level among pathologists. Additionally, linear trajectories and particular
velocity patterns were found for the registered diagnostic paths.

Background
A very recent field, known as virtual microscopy, has
made possible digital exploration of histological slides,
archiving of these slides for later analysis and easy
access to this information. A slide digitization is called a
virtual slide (VS) and is constructed from sequential
captures of microscopical fields [1]. These virtual slides
are high resolution images whose visualization requires
a specialized software, called the virtual microscopy
viewer, a specific tool devised for running over images
composed of thousands of microscopical fields of view.
Complex mechanisms are involved in the genesis of
the navigation patterns, guided by the training time and
triggered by the contents of the slide [2]. Coarsely, diag-
nosis in pathology can be considered as a process com-
posed of four sequential steps: look, see, recognize and
understand [3]. A definitive diagnosis is achieved by fol-
lowing a standard methodology with two coarse phases:
first examination is carried out at the lower magnifica-
tion (panoramic) in order to locate relevant information
in terms of a spatial organization of the histological
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sample (scanning), while the second and further exami-
nation is conducted for analysis of the slide contents
which implies changing the magnification (zoom) [3-5].
This analysis is performed through navigation of the
zoomed areas [5], on which gentle movements are gen-
erally required. This learned strategy has been observed
in multiple studies in which it has been possible to
determine the existence of these two phases. Tsuchiha-
shi et al. studied one pathologist exploring twenty differ-
ent slides in telepathology. This investigation identified
two patterns: exploration at low magnification and ana-
lysis at higher magnifications [4]. Crowley et al.
recorded on videotape diagnoses performed on four his-
tological slides by fifteen pathologists, distributed into
three different categories: novices, intermediates and
experts [5]. Results showed that intermediates and
experts exhibited very similar patterns to the two
described before, i.e., a general search strategy and selec-
tion of areas to revisit them at higher power. Tiersma
et al. investigated visual exploration patterns in pathol-
ogy using an eye tracker mechanism.

Results showed two patterns: scanning (saccadic eye
movements) and selection (eye fixation over specific points
for further exploration) [6]. Finally, Krupinski et al., using
an eye tracker system in a group of pathologists,
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demonstrated that visual exploration is characterized by a
rapid determination of ROIs, which likely contain diagnos-
tic information [2]. It is worthy to strengthen out that the
experimental setup of that study allowed only scanning
patterns, i.e., magnification changes were not available.

Overall, the experience with images in virtual micro-
scopy should be very similar to an actual optical exami-
nation. Therefore, design of friendly and useful
graphical user interfaces (GUIs) is a fundamental issue.
Indeed, navigation patterns arise from two intermixed
processes: the motor control associated to some move-
ment automations and a refined search information pro-
cess, which reflects the level of expertise. Yet patterns
may be different, the more expert is the group of
pathologist the more similar are the locations they visit
when exploring a histological slide [2]. It is important to
keep in mind that the virtual microscopy tool does not
imitate exactly a conventional light microscope, but
rather it has the purpose of allowing a pathologist to
navigate at any resolution, while the VS is always avail-
able at the lowest resolution, that is to say, the expert
always conserves a thorough panorama of the VS.

This study aims to determine the main factors
involved in the genesis of the navigation patterns from a
particular diagnostic path. These patterns are the result
of the interaction between the image contents and the
expert experience. Other studies have focused before on
studying either the attentional mechanisms that guide
trajectories in this type of images, or the general
mechanisms at the very base of the interaction of an
expert with an image. On the contrary, our study inte-
grates these two visions and introduces new elements as
the magnification changes. Finally, as far as we know,
this is the first study which actually evaluates how a
pathologist moves the stage, in other words, we dedi-
cated our endeavors to figure out the influence of both
the image contents and the pathologist methodology in
an actual interaction context.

Methods
A total of four randomly selected histological specimens
were digitized and six VS were assembled, using an acqui-
sition system composed of a Carl Zeiss Axiostar Plus
microscope, a Sony high resolution digital video camera
Handycam DCR-HC85 (640 x 480 pixels) and two Carl
Zeiss adapters: 426126 and 456006 (Carl Zeiss, Light
Microscopy, Gottingen, Germany). Hematoxylin-eosin tis-
sue samples from endomyometrium, gallbladder, prostate
and a uterus leiomyoma were used for this study.
Histopathological slides were selected from a set of
routine cases from the Pathology Department at the
National University of Colombia, a laboratory of med-
ium complexity. These samples were selected by an
expert pathologist. The endomyometrium and the
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leyomioma were obtained from a total hysterectomy of
a patient with abnormal uterine hemorrhage due to
multiple leyomiomas; the endomyometrium had only
focal epithelial componet and the leyomyoma was basi-
cally composed of smooth muscular tissue with quite
homogeneous distribution. The gallbladder specimen
was obtained from a colecistectomy and the prostate
sample was obtained by transrectal biopsy, case in
which the tissue is characterized by the presence of
glands supported by stroma. Finally, the uterus leio-
myoma, obtained from a myomectomy, is basically com-
posed of a muscular tissue whose distribution is quite
homogeneous. They were digitized and six different
images were assembled. Sizes in pixels were 53280 x
39360, 42480 x 15840, 33840 x 21600, 53280 x 39360,
42480 x 15840 and 49680 x 28320 which stand for an
effective area of 11.97 x 8.84, 9.54 x 3.56, 11.16 x 6.36,
11.97 x 8.84, 9.54 x 3.56, 11.16 x 6.36 mm* (pixel size
of 1.98 um?), respectively. Mega-images were stitched
using automatic registration with cross correlation as
the similarity measure and were stored in JPEG2000 for-
mat for latter access and navigation [7].

GUI design

Pathologist navigation patterns were recorded using a
virtual microscope prototype whose GUI was adapted to
the pathologist requirements [7]. This design exploits
the importance of low magnifications for exploration
and analysis at high resolutions for diagnosis. The GUI
is composed of a thumbnail and an auxiliary window.
The former displays the lowest resolution thumbnail
image, in which a rectangular re-sizable window allows
a required selection. The thumbnail window is set to a
desired size at the beginning, while the auxiliary window
is constantly varying, according to the magnification
level of the selected ROI in the thumbnail window. Dis-
placements of a particular ROI were only allowed in the
thumbnail window through drag and drop operations.
Finally, for each requested RO, its position, size, resolu-
tion and time were recorded for later analysis.

Figure 1 shows the virtual microscope GUI. Naviga-
tion in the developed prototype is carried out through a
conventional mouse and consists of two processes: first,
a window is picked at the thumbnail image (the VS), fol-
lowed by a displacement of this window to an interest
point, proportional to the mouse movement. This proto-
type was aimed at achieving integration of this kind of
tools with a routine pathologist’'s work, a design
that should allow simultaneous displays at different
magnifications.

Experimental setup
The aim of the present study was to compare naviga-
tion patterns when expert pathologists are exploring
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left panel. Panning was only allowed in the VS window.

Figure 1 GUI of the virtual microscopy prototype. GUI of the virtual microscopy prototype: the figure shows the whole Virtual slide at the
right panel (small magnification) while a large resolution of the black square in the VS enlargement is displayed in the auxiliary window at the

virtual slides. Four expert pathologists participated in
this study, all of them had similar years of experience
(about five years), and were graduated from the same
pathology school program. Each pathologist was pre-
viously trained on virtual microscopy using two test
virtual slides. Average, the training time was 20 min-
utes so that at the end of this time they were free to
navigate the slides at will, until they could reach a
probable diagnosis and organ identification. Six virtual
slides were chosen, as parts of full histological slides,
with a relative size which varied between 10% to a 30%
of the whole histological sample. An experienced
pathologist, with at least five years of experience,
selected the digitized area. For the sake of the experi-
ment, images shown to the pathologist belonged to
areas in which it was difficult to determine both the
organ and the pathological entity so they were forced
to spend more time, exploiting the navigation tool [8].

The six VS were randomly displayed for each of the
pathologists so that the examination order was always
different. Each pathologist was asked to run over the
virtual slide, up to a diagnosis was set, using the same
screen monitor they use in their routine computer work
(CCFL (220 nits) WXGA (1280 x 800 of 13, 3”)). Dur-
ing examinations, every pathologist action was recorded
for later analysis, namely, we recorded the ROI location,
the ROI size related to the thumbnail image, the time
any action (drop or drag) was carried out and the mag-
nification level.

Evaluation issues

We claim that from a navigation point of view, an image
can be thought of as an ordered partition of spatial loca-
tions with different levels of relevance associated to
each. Therefore, an image is composed of regions with
different levels of interest. Pathologists shall visit a mini-
mum number of regions, thereby gaining a maximal
amount of information in a minimal time. Evaluation
was then addressed to verify these two main issues:
images are composed of pieces of information with dif-
ferent levels of relevance (Regions of Interests) and
pathologists will use a minimum time exploring them
(Navigation Patterns). The first item was assessed as
follows:

1. The percentage of visited area was calculated for
the group of pathologists and the whole set of VS.

2. The percentage of coincidence among the differ-
ent visited areas, i.e., at least two pathologists exam-
ined the same image region within the navigation.

3. For each pathologist, the time spent per region
was also computed.

4. Coincidence among ROIs, defined as the common
visited areas and longer visits was calculated.

The second item was assessed as follows:

1. Mouse movement velocities were registered and
analyzed.
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2. Linearity of trajectories: Euclidian distance was
computed and compared against the actual trajectory
distance, i.e., a ratio between the two distances was
calculated.

Results

Regions of Interests

As previously discussed, we suppose that ROIs are
defined by a combination of the three criteria presented
hereafter:

Percentage of visited area

The percentage of visited area by at least one pathologist
was computed for each of the virtual slides (Table 1).
These values varied between 44% and 91% with an average
of 66%, indicating that the amount of explored tissue is
highly dependent on the image contents, that is to say,
some virtual slides were little-explored because relevant
information was easily available.

Pathologists were forced to further explore the image,
attempting a maximum level of information, but in gen-
eral this was hardly established since information was
not enough as to consolidate a diagnosis. Results sup-
port this statement since the percentage of explored
image was larger than a 50%.

Percentage of Coincidence

The percentage of coincidence of the visited areas
among pathologists of each VS was computed (Table 2).
These values varied between 41% and 97%, with an
average of 70.5%, indicating that the explored areas
were quite similar, though the VS content is entirely dif-
ferent. The coincidence level turns out to be dependent
on the kind of information present in the virtual slide
and located in specific regions. For example, table 1
shows that pathologists visited a 48% of the 2th VS,
while its level of coincidence was 97%. In this virtual
slide it is observed that there is no tissue in about a 30%
of the entire VS. Interestingly, the histological sample
corresponds to an endo-myometrium, in which the
glands are the fundamental part of any diagnosis and in
the virtual slide they are located in specific areas. The
diagnostic path, in this case, searched these structures

Table 1 Percentage of visited area for the group of
pathologists in the whole set of VSs

Image Percentage of visited area per image
image 1 91%
image 2 48%
image 3 67%
image 4 86%
image 5 44%
image 6 60%
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Table 2 Influence of the image contents in the
navigation pattern observed from our experiments was
assessed by measuring the coincidence level in the
visited regions, namely, the area percentage which was
visited by more of one pathologist

Image Percentage of coincidence in visited areas
image 1 63%
image 2 97%
image 3 95%
image 4 69%
image 5 41%
image 6 58%

Coincidence average was 70.5%, which demonstrates that there are relevant
information areas.

all over the virtual slide and overall, the four patholo-
gists run over the same parts of the VS.

As expected, samples where information is located
show higher levels of coincidence. The first virtual slide
corresponds to prostatic tissue, in which there is a large
number of glands, so pathologists dedicated most of the
navigation exploring them: the coincidence level is high
(larger than 50%). The second virtual slide corresponds
to an endomyometrial sample, its epithelial component
is quite located and constitutes a very small area of the
sample so the coincidence level is also high. The third
virtual slide corresponds to a fragment of a leiomyoma
with a predominant stromal component. The areas vis-
ited by the pathologists corresponded to structures with
a luminal space, seen at the low magnification. Interest-
ingly, as it was not clear if they corresponded to glands
or vessels, the resultant coincidence level was again
high. The fourth virtual slide was clearly a leiomyoma
and yet the visited area was large (86%), the coincidence
level was only 69%. The fifth virtual slide was a gallblad-
der, the epithelial component is minimum but scattered
and then the area to explore large, the coincidence level
was smaller than the other images. Finally, the sixth vir-
tual slide corresponded to a prostate, in which the
epithelial component was sparse and hence also the
coincidence level and the area to explore.

Spent Time

A potential ROI could arise either when every patholo-
gist stops at particular image location and therefore
information therein is relevant, or when the pathologist
spans a longer period in a precise area so that even if
the interest in the region is not shared among the group
of experts, there exists a potential source of knowledge.
In consequence, we also evaluated the time every
pathologist required for examining regions as the total
time of visit per pixel in the thumbnail window, which
was estimated by accumulating the set of visit times and
computing their average. A ROI (in the time sense) was
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then defined as the region composed of those pixels for
which this quantity was larger than the mean.

The analysis in this section was pointed out to deter-
mine whether or not there exists any pattern regarding
the time used for analysis. Therefore, a diagnostic path
could be set not only in terms of the image contents,
but also according to the time a pathologist needs to
explore the VS. Figure 2 illustrates a thorough diagnos-
tic path in a VS, a scanning pattern with two different
magnifications. The magnification changes are high-
lighted in the image as the green and blue squares.
There are two scanning patterns, each at a different
resolution. Interestingly, the scanning pattern at higher
magnification required also higher time rates, indicating
that once the search has been established, these experts
devoted their efforts to analysis and diagnosis on regions
in the image that contain relevant information. This
analysis was extended to the entire set of pathologists.

Figure 3 shows the percentage time every pathologist
spent over the ROIs previously established at any of the
six images. Overall, pathologists spent at least a 50% of
the average of the navigation time on these ROIs, most
of them detected at the larger magnification. The plot
shows that VS two and five were less explored regard-
ing these regions. Overall, in despite of the different
contents in these images, these results indicate that
pathologists spend most of the navigation in regions
where information is more relevant and the scanning
process turns out to be dedicated to search such
information.

Coincidence in ROIs

One important question we addressed consisted in
determining, whether or not the ROIs defined by spatial
preferences or time, would coincide. A standard mea-
sure of the degree of intersection between regions was
used: the Jaccard coefficient, a measurement of the
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Figure 3 Average time percentage spent in different ROIs. It is
displayed the average time percentage spent among the different
ROIs for each of the pathologists and through the set of six images.
Total times were normalized by the maximum visited time for
comparing navigations with different durations. The x axis
corresponds to the set of available images while the y axis stands
for the average of percentage of time spent in the previously
determined ROIs. Note that in general pathologists spend more
than a 50% of the navigation time exploring these regions.

similarity between sample sets, defined as the intersec-
tion divided by the union of the sample sets. This coeffi-
cient has a maximum value of 1 when there is total
agreement and zero when there is none.

The coefficient was thus calculated for the six VS,
showing different degrees of overlapping, from a 0.9 of
the third pathologist for the second image to a zero
overlap coefficient for at least one of the pathologists
along the whole sets of images. Overall, Figure 4 shows
coincidence levels below 0.5 in most images, indicating
that effectively there exist different ROIs per pathologist,
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Figure 2 Diagnostic path. Left panel a whole diagnostic path composed of multiples jumps among different image locations. This diagnostic
path shows not only scanning patterns at the beginning, but also magnification changes, highlighted in the figure as the green and blue
squares. Once the magnification changes are established, navigation keeps under scanning patterns and the observation window is smaller since
resolution is higher. At the right panel it is displayed the image locations with higher time rates. The white squares correspond to longer times
while grey ones stand for smaller. Note that longer times are spent in the part of the diagnostic path which was conducted at the higher

magnifications.
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Figure 4 Coincidence level between two different ROI types.
Jaccard coefficient is shown in the y-axis against the particular VS in
the x-axis. This coefficient measures the level of coincidence
between the two sorts of ROIs, namely, the ones determined by the
number of visits and those established when a pathologist spent a
significant time exploring them. In general, there is not a systematic
trend and pathologists use different navigation patterns regarding
times and preferred locations. These results indicate that ROIs may
be defined, depending on the application, by two different sets of
features.

defined by the spent time or by the number of visits, i.e.,
the level of coincidence is low. Therefore, there is no
specific pattern, for instance the fourth pathologist (tri-
angle) has no coincidence level in images three, four
and five, while in images one, two and six, the Jaccard
coefficient is 0.3, 0.4 and 0.6, respectively. Similar results
were also observed for the pathologists, indicating that
each pathologist has different preferences when search-
ing further information, either by time or preferred
location.

Navigation patterns

Mouse Movements

By default, all navigations start at the upper-left corner
using a standard 15 x 15 um?® microscopical field of
view, which corresponded to a 100 x 100 pixel window,
within the thumbnail virtual slide. In the first part of
the navigation, the window of interest is displaced
through the virtual slide under a drop-drag-drop para-
digm, constituted as the basic operation so that differ-
ences are mainly observed in the velocity profiles with
which these navigations are carried out. In addition,
pathologists could change magnification during explora-
tion, either zooming in or out. An intermediate opera-
tion is an adjustment of the field of view when changing
magnifications, i.e., a window re-sizing which allows to
cover the same area when resolution changes. Overall,
once this new size was set, the pathologist continued
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the spatial exploration using the same magnification, as
observed in figure 5. So far our observations indicate
what has been described in the literature, that is to say,
navigation is composed of two complementary strate-
gies: scanning and magnification.

When comparing the navigations available over the
same image, a main conclusion is that every pathologist
always uses both scanning and zooming operations.
Interestingly, the coincidence level in the image in figure
6 was 63%, a fact that definitely suggests that the image
contents steers the resultant navigation profile. The vir-
tual slide corresponds to a prostate sample, with differ-
ent sections and ROIs defined by the loci with high
gland density. Figure 6 shows the four different naviga-
tion profiles, with very different diagnostic paths and
observation strategies. Overall, virtual slide exploration
was very variable, with different levels of interest with
two main navigation patterns: a first strategy defined by
three of the pathologists who used the default window
and run over the virtual slide with occasional magnifica-
tion changes, while in a second strategy, the pathologist
enlarged the initial window to cover the maximum sur-
face while exploring the slide. The second strategy
wastes much more computational and network
resources because when using larger areas, the system
has to load more information and in consequence it
takes more time. In these conditions, the problem is
that nothing can ensure that the level of interactivity
may lead to diagnosis in minimal time.

Figure 6 shows different navigations over the same vir-
tual slide. In all of them the navigation is composed of a
scanning phase and zooms, at different ROIs. Interest-
ingly, three pathologists used the default window (a, b,
¢) and the fourth one enlarged the window to cover a
maximum area.

Finally, the velocity profiles, corresponding to the
navigation displacements of the group of pathologists
was observed, showing that although every pathologist
has different navigation patterns, there exists a common
velocity profile, i.e., velocity rapidly increases up to a
certain level and then it decays with lower slopes. This
profile is likely a complex mix of associated factors such
as the microscopical magnification, the neuromuscular
mechanics and the type of restriction demanded by the
developed GUI, i.e., a drop-drag-drop sequence (screen
and mouse). As shown in figure 7, explorations show
high velocity profiles when experts are moving between
ROIs, and lower velocity when approaching them. The
GUI design allows to easily jumping from one informa-
tion zone to a next, an effect observed in terms of velo-
city as the increasing part of the peak while a new zone
is reached and a decreasing velocity profile since this
zone deserves a certain amount of time for examination.
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Figure 5 Complete navigation example. Complete navigation, split into four sequential panels (a, b, ¢ and d) for the sake of understanding.
Panel (a) shows the whole picture, which obviously looks very jammed by the number of windows and window movements. Hence navigation
was split into a sequence shown in the next three panels: panel b starts by depicting a classical scanning pattern, composed of multiple jumps
between ROIs. Panel (c) shows the magnification change from the dotted window to the thick one. Finally, the expert uses this magnification for

exploring the rest of virtual slide in panel (d).

(d)

Path linearity among ROIs

The average coefficient of linearity is herein defined as
the distance between two ROIs divided by the actual
run distance. This coefficient has a maximum value of 1
when there is a linear trajectory and lower when is not
linear.

This coefficient was calculated for any trajectory
between the previously determined ROIs and for every
available navigation. Results are depicted in figure 8, as
a histogram of occurrences in which the percentage of
the available set of trajectories (157) is drawn in y-axis
and the linearity coefficient in the x-axis. Interestingly,
the coefficient average is about 0.8 and its standard
deviation of + 0.18, so that one can conclude that move-
ments between ROIs are basically linear.

Discussion

The present investigation was addressed to determine
main pathologist’s navigation patterns when using vir-
tual microscopy slides, using a GUI adapted to the
pathologist’s workflow. Four pathologists with a similar
level of experience, graduated from the same pathology
program, navigated six virtual slides. Provided that a

microscopical navigation is an interactive process, this
study was devised to establish the relative importance of
both image contents and navigation patterns of patholo-
gists with high degree of expertise. A contribution of
this work is that our GUI allowed to study not only
scanning patterns, as described in the literature [2], but
also magnification changes, a scenario really close to
what pathologists are doing in their daily routine. Like-
wise, we explored the concept of ROI from different
perspectives, either by analyzing the number of visits to
a particular VS location as described in other previous
investigations [2], and more importantly, by taking into
account two new issues, i.e., the time a pathologist dedi-
cates to explore this particular location and the coinci-
dence level among pathologists, determinant factors
which have not been evaluated so far. In addition, we
also assessed the different paths described during these
navigations, namely, mouse movement velocities and
linearity of the diagnostic paths.

In previous studies, ROIs have been defined as areas
to which the examiner is rapidly attracted to look and
may contain diagnostic information [2], where visual sti-
mulus is analyzed in detail [8] or by regions that are
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Figure 6 Different navigations of each pathology over the same virtual slide. Different navigations over the same virtual slide. In all of
them the navigation pattern consists in both scanning and zooming in different ROIs. Interestingly, 3 pathologists used the default window
(a, b, ) while one of them enlarged the window to cover a maximum surface.

td)

prioritized by the image content (first criterion) [9].
However, such definitions are still incomplete becasue a
particular examiner can be rapidly drawn to regions
which require a further exploration for classifying the
type of information. Such pattern can be easily observed
in difficult cases in which relevant information is hidden
or information associated to the case is not enough as
to establish an objective judgment. This leads us to
acknowledge that the first path approximation is insuffi-
cient and that other criteria should be included. Classi-
cal psychophysical theory claims that the time spent in

any particular task is directly related to the degree an
examiner is familiar with a particular pattern [10]. We
decided then to include the time spent at examining, as
an evaluation criterion (second criterion) of what a ROI
means in pathology, because the common pathology
workflow consists in developing technical skills as to
search abnormalities, a very harsh picture in many
pathologies. In the present investigation, this factor
resulted crucial since our GUI permitted to zoom in at
any of the available preparations and so we could evalu-
ate the importance of a particular image locus, not only

(a)

Figure 7 Example of a characteristic velocity pattern. Example of a characteristic velocity pattern generated by a left to right movement.

(b)
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Figure 8 Percentage of occurrence for each coefficient of
linearity. y-axis shows the percentage of occurrence for each
coefficient of linearity in all the pathologist navigating the same
image. The x-axis represents the different ranges of linearity, as
observed in the figure, most of the movements are linear.

because the examiner stopped there, but basically
because information was valuable and required actual
analysis. This fact could be established because we could
compare the time spent at any of these image loci.
Finally, another analysis direction (third criterion) could
be the coincidence area visited during navigations, a fac-
tor which can be much more objectively included as a
criterion, even though its inclusion in clinical routine is
very difficult because the number of pathologists exam-
ining the same slide is very rarely larger than two. Over-
all, our results have supported the importance of
simultaneously taking into account the three issues,
mentioned before, as the base of an actual ROI defini-
tion because: (a) Pathologists are effectively attracted by
some regions, as inferred from Table 1, with percentages
of visited areas from 44% to 91%, a variable figure which
directly depends on the diagnostic difficulty. Recall that
the present study was devised for studying navigation
patterns and therefore information related to the case
was not available, this factor did increase the navigation
time but even in these hard conditions, pathologists did
not need to visit the entire virtual slide. Images asso-
ciated to larger visited areas are consistent with the
ones in which it was more difficult to determine the
organ and/or the pathologic entity. (b) The interest for
particular image loci is shared by most of the patholo-
gists, a claim inferred from a coincidence level nearby to
70.5%, as observed in Table 2. Finally, we found that the
time spent at examining each of these regions was at
least a 50% of their navigation time, on specific regions
previously defined, whereby some of the original regions
were ruled out when considering the time factor. This
evidence suggests that none of these factors could be
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considered as the base for defining the ROI and prob-
ably complex combinations of them are required for
specific applications.

Some recent works have approached the problem of
automatic ROI determination in histopathological
images [11-15]. Most of these works have been devoted
to segment cancer, for instance, breast tumors and
colon biopsy images [13,15], since in these images the
relevant regions are basically those containing abnormal
architectural patterns. Nevertheless, the automatic ROI
determination is still a challenging problem in many
other cases in which relevant information is part of the
normal patterns [14]. The problem of determining ROIs
is a complex combinations of different issues, among
others, the high variability at the level of the low image
features (architecture, texture and color) [11], artifacts
at any level of the pathology workflow chain (sampling,
sections, dyes, microscopes) [16], and finally, the seman-
tic gap between the low level image representation and
the concepts formulated by a pathologists during the
diagnosis process [17]. The present work proposed an
alternative way to setting ROIs at taking advantage of
the previously recorded navigations, i.e., information
about visited area and times. There are two main appli-
cations for which determining ROIs can be fundamental:
telepathology and training. In the former case, determin-
ing ROIs may accelerate the process of sending informa-
tion to the specialist while in the latter, educational
environments may use VS prototypes for training spe-
cialists [18]. In the case of educational applications,
slides are previously navigated by a set of expert pathol-
ogists and the strategies herein proposed could be used
to automatically select ROIs, without additional image
processing overload. Moreover, the mouse patterns can
also be used to speeding up navigations, using strategies
such as cache and prefetching [7]. Finally, patterns gen-
erated during actual navigation could be used as training
samples to devise automatic navigation strategies, based
on machine learning [15].

Classically, exploration patterns in medical imaging
have been studied by both tracking the visual system or
analyzing the diagnostic path complexity [19]. However,
due to the restrictions of visual systems for acquiring
and interpreting high resolution images and the limited
display capabilities of the computational resources [20],
new alternatives for exploring virtual slides have been
recently proposed [7]. In actual virtual microscopy sce-
narios, any diagnostic task requires the use of a device
(a kind of joystick), mainly mouse devices, to point out
relevant information over a low resolution version of
the VS. The kind of patterns generated by the interac-
tion of an expert and a virtual slide is obviously related
to the type of interface. Overall, navigation patterns in
virtual microscopy have been recently studied [21], and
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the few reported studies use very complicated interfaces
such as eye trackers, which may bias the observed pat-
terns. As far as we know, there exists only another
study that has recorded diagnostic paths during actual
navigations [21] but its analysis is totally different since
therein, authors do not analyze velocities, and time is
not included as a criterion at defining what a ROI is.
Such study is focused on exploring prefetching and
caching as possibilities to reduce navigation and transfer
times. This study reported partial image covering, as
observed in the present investigation, and an average
linearity coefficient of 0.41 for the complete diagnostic
path. Interestingly, they also found a 0.85 linearity coef-
ficient when the analysis was carried out on three con-
secutive steps of the diagnostic path. On the contrary,
we assessed linearity for every single step that is part of
the diagnostic path, when using virtual slides in a con-
ventional laptop and mostly under the scanning phase.
Our results showed a 0.8 linearity coefficient, a quite
coherent figure when comparing with the study men-
tioned before. In addition, we identified velocity patterns
in scanning tasks, consisting in a rapid increase of velo-
city when pathologists leave the ROI and a decreasing
profile velocity when the expert is nearby to a new ROL

So far an optimal GUI design in virtual microscopy is
still an open problem. Many virtual microscopes try to
emulate the experience of navigating a real microscope,
that is to say, to move a microscopical stage while
zooming in and out. The simpler exploration strategy
consists in using a unique window, which stands for the
microscopical objective and provides interactions with a
virtual stage by means of mouse panning, while the
zoom operations are simulated by clicking. This strategy
is of course closely related to a real microscope explora-
tion, however if an expert might leap between two high
magnification regions, that expert must zoom out from
the first region, displaces the field of view to the second
region and then zoom in. This pattern constitutes a nat-
ural movement with any actual microscope, but for a
virtual device, it ignores the main display capacities of a
virtual interface. This complex set of operations can be
drastically reduced by taking advantage of both digital
storage and display potentialities. The GUI herein pre-
sented approached this problem by “focus & context”
[22], a set of techniques that combines a “focus view”
(the auxiliary window), i.e., the GUI is partially charged
of displaying the high degree of detail, and a “context
view” (thumbnail window) is charged of presenting the
VS at low resolution. A fundamental hypothesis in the
present work for the presented design is that an expert
filters information out using the “context view” and
then switches to the “focus view”, on which the process
of information refinement and diagnostic, is achieved.
Therefore, this focus view occupies most of the available
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area, while the smaller part for the context provides
orientation during interaction. For the sake of interac-
tion, this focus view is placed within the context view,
allowing a scanning-like display as well as an additional
view of the whole contents. This design compensates
many disadvantages of ordinary scanning because every
interaction can then be executed using only the content
view so that leaps between high magnification regions
become simple displacements of this focus view within
the context view.
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