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Abstract

Diagnosing Alzheimer’s disease through MRI neuroimaging biomarkers has been used as a complementary marker
for traditional clinical markers to improve diagnostic accuracy and also help in developing new
pharmacotherapeutic trials. It has been revealed that longitudinal analysis of the whole brain atrophy has the
power of discriminating Alzheimer’s disease and elderly normal controls. In this work, effect of involving
intermediate atrophy rates and impact of using uncorrelated principal components of these features instead of
original ones on discriminating normal controls and Alzheimer’s disease subjects, is inspected. In fact, linear
discriminative analysis of atrophy rates is used to classify subjects into Alzheimer’s disease and controls. Leave-one-
out cross-validation has been adopted to evaluate the generalization rate of the classifier along with its
memorization. Results show that incorporating uncorrelated version of intermediate features leads to the same
memorization performance as the original ones but higher generalization rate. As a conclusion, it is revealed that
in a longitudinal study, using intermediate MRI scans and transferring them to an uncorrelated feature space can
improve diagnostic accuracy.
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1. Introduction
Alzheimer’s disease (AD) is known as the most preva-
lent type of dementia in elderly subjects which has been
influenced about 26 million people worldwide [1,2] Dis-
ease onset starts with abnormal excessive agglomeration
of amyloid b (Ab) protein and then hyperphosphory-
lated tau in the brain [1]. This causes deterioration of
the synopsis and axons in neurons. Gradually brain
degeneration lapses memory and culminates in func-
tional and lingual decline. These changes always inter-
vene in the same order but they may overlap each other
in various clinical disease stages [2]. These orders and
overlaps are illustrated in Figure 1.
Clinical measures for diagnosing AD are traditionally

based on two last biomarker and some standard mea-
sures such as Mini Mental Score Exam (MMSE), Clini-
cal Dementia Rating (CDR), Functional Assessment

Staging Scale (FAST), Global Deterioration Scale (GDS)
or Alzheimer’s disease Assessment Scale (ADAS) are
used to diagnose people with AD clinically. It is obvious
that these measures are useful just in the second and
third stages of disease and cannot be used in first stage
where there is no manifest behavioral or memory
impairment [3,4]. Furthermore, these scores singly are
not accurate enough and some complementary biomar-
kers are needed for accurate diagnosis of AD [4,5]. The
need for monitoring disease progression in designing
new therapeutic trials encourages researchers to find
noninvasive accurate biomarkers of AD [6,7]. MR
images due to their high resolution and non-invasive
nature, are good candidates for realizing degeneration of
brain structures and finding strong relationships
between them and disease progression [6]. Various ana-
tomical structures of brain such as Entorhinal Cortex
[7-9], Hippocampus [10,11] and Cerebral Cortex [12-14]
influenced by AD and their atrophic characteristics such
as volume, shape and thickness can be used as
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biomarkers of AD [6,12,15,16]. Concentrating on
atrophic characteristics of anatomical structures is prone
to some imperfection. That is, disease related atrophies
don’t necessarily follow the anatomical boundaries of
structures and each part of the brain can be changed
under the influence of disease.
The rate of whole brain volume change is almost con-

stant in the third stage of disease and this makes it use-
ful in monitoring the pharmacotherapeutic trials
[12,17-19]. Figure 2 shows the profile of structural
changes in AD. It is depicted that amyloid markers
change at early stages of disease, even decades before
diagnosing AD. Besides, degeneration of anatomical
structures starts somehow latter, around 10 years before
clinically diagnosing AD, but still beneficial for AD
prognosis.
There are some methods for measuring brain atrophy

in the literature but only three of them are validated.
Boundary Shift Integral (BSI) [20,21], Structural Image
Evaluation Using Normalization of Atrophy (SIENA)
[22] and cross sectional counterpart of it (SIENAX) [18]
are the most accurate and broadly accepted methods for
evaluating atrophy rate of the brain. Research shows
that SIENA has the same accuracy as BSI and so it is
fair to choose any of the above-mentioned method in
measuring atrophy rate of whole brain in a two-year
longitudinal study. That is, the differences between two
measures have no effect on the pathological discrimina-
tion power of the method.
To measure the whole brain atrophy rate, the pipeline

conducted by Smith and et.al are used in this paper
[18,23-28]. First step in this pipeline is brain surface
extraction which separates the brain from other non-
brain parts such as skull or scalp in both images of

longitudinal study. To do so, a deformable tessellated
mesh have been used which deforms under the control
of local parameters and finally matches the brain of
head [27]. Afterward, base images must be registered to
follow up counterparts. In this step, it was necessary to
avoid rescaling artifacts which could change the atrophy
size. With this in mind, it has been assumed that the
size of skull is constant; it is considered as normaliza-
tion factor in scaling process. To escape unnecessary
modifications of nonlinear registration which matches
images as much as possible and eliminates the atrophic
differences between them, the linear registration is pre-
ferred in this study [26].
Next step is to measure the differences between

images. Thus, brain images have been segmented into
their three major tissues - Gray Matter (GM), White
Matter (WM) and Cerebrospinal Fluid (CSF)- [29].
Boundary points of these tissues have been used to mea-
sure the difference between images. One 3 by 3 gradient
operator was used to find the gradients in these points.
In a peer to peer comparison of 3mm intensity profile on
these gradients, the shift distance that maximizes the
correlation between these profiles have considered as
difference measure. Normalized sum of these measures
over all boundary points indicates the overall differences
between brain volumes and is called Percentage of Brain
Volume Change (PBVC) [22].
Magnetic resonance images (MRI) from Alzheimer’s

disease neuroimaging (ADNI) database are used in this
study [30]. Percentage of brain volume change is evalu-
ated between baseline and the 6th month and the 24th
month follow up intervals pair wise. These 3 atrophy
rates are used as features in discriminate analysis (DA).
Because of high degree of correlation between the

Figure 1 Various biomarkers of Alzheimer’s Disease and the stage of disease they are affective. The first three biomarkers can be used
for prognosis of Alzheimer’s Disease prior to dementia diagnosis.

Farzan et al. Diagnostic Pathology 2011, 6:105
http://www.diagnosticpathology.org/content/6/1/105

Page 2 of 9



features, principal component analysis (PCA) is used to
convert the feature space to an uncorrelated feature
space and at the same time to reduce the size of space.
Discriminative power of these features is compared with
the original ones.

2. Materials and methods
2.1. Subjects
A total of 30 AD patients (46.7% female; mean age of 75
at the standard deviation of 7), and 30 age-matched
healthy normal controls (50% female; mean age of 77 at
the standard deviation of 5) are selected from the ADNI
public database http://www.loni.ucla.edu/ADNI/Data/.
ADNI is a large five-year study launched in 2004 by the
National Institute on Aging (NIA), the National Institute
of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharma-
ceutical companies and nonprofit organizations, as a
$60 million public-private partnership. The primary goal
of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsycho-
logical assessments acquired at multiple sites (as in a
typical clinical trial), can replicate results from smaller
single site studies measuring the progression of MCI
and early AD. Determination of sensitive and definite

markers of very early AD progression is destined to aid
researchers and clinicians to monitor the effectiveness
of new treatments, and diminish the time and cost of
clinical trials. The Principal Investigator of this initiative
is Michael W. Weiner, M.D., VA Medical Center and
University of California, San Francisco.
All the AD and NC subjects in this study had success-

fully undergone MRI scanning, cognitive tests and clini-
cal evaluation at baseline, 6th months and 2nd year
follow up.

2.2. Statistical analysis
Some demographic parameters such as age, sex and
years of education have remarkable impact on brain
atrophic measures and to avoid their influence on the
study, subjects of two groups must be matched regard-
ing them. Difference in gender among the two groups is
tested with the Chi-square test and matched (p = 0.796).
Independent two sample student t-test is used to test
inter-group differences in age and years of education. As
there are no significant differences in age (p = 0.188)
and years of education (p = 0.554) among the two
groups, they were ignored in diagnosing AD in this
study. Baseline MMSE and PBVC in all three time inter-
vals of baseline to the 6th month follow up (PbvcSc-6),

Figure 2 Natural progression of cognitive and biological markers of Alzheimer disease: a theoretical model.
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6th month to 24th month follow up (Pbvc6-24) and base-
line to 24th month follow up (PbvcSc-24) indicate signif-
icant differences between the two groups (Table 1).
These results approve that the two groups are dispa-

rate based on longitudinal volume changes, but it does
not specify the way of classifying one individual subject
into one of these groups based on above features.
DA is a statistical technique used to differentiate

groups when the underlying features are quantitative
and normally distributed [31]. It is an appropriate
method for classifying patterns of subjects into two
desired separated groups, AD and NC.

2.3. Discriminant analysis
The aim of DA is to analyze group separation power for a
set of normally distributed features or pattern of features.
Test of normality for all three atrophic measures imply
their normal distribution through both groups (Table 2).
The simplest and first way to this is using total means

of features as threshold values. Patterns with feature
values above it will be assigned to one group and the
ones bellow it to the other.
Referring to the total means of Table 1, results of clas-

sification will be as shown in Table 3. It is obvious that
long-term atrophy rates yield higher accuracy.

These values may not be the optimal threshold values
and for comprehensive evaluation, Receiver Operating
Characteristic (ROC) curve analysis is carried out. ROC
curve plots for all of the three features and associated
parameters are shown in Figure 3.
The highest diagnostic accuracy of 90% is achieved by

using PbvcSc-24 and a specific threshold value. To eval-
uate generalization capacity of this feature, leave-one-
out-cross-validation is conducted. Finding discloses
lower generalization accuracy besides the memorization
(Table 4).
After that, two other features are included in DA to

see whether the accuracy is enhanced or not. A key
assumption of DA is that the features should not be
highly correlated, but these three features are highly cor-
related (Table 5).
It is clear that PbvcSc-24 has high correlation with

PbvcSc-6 and Pbvc6-24 and this violates the terms of
analysis. To overcome this we use principal compo-
nent analysis (PCM) to convert them to uncorrelated
features. There are two main steps in conducting
PCA:

• Step 1: Assessment of data suitability

Sample size or factorability of data, and the strength
of the relationship among the features are two main
issues to consider in determining whether a particular
data set is suitable for PCA or not. A sample size over
feature space dimension ratio of 10/1 has been recom-
mended [32]. To put it in other words, at least 10
samples for each feature are needed to be PC analyzed.
This criterion is passed in the study. Moreover, two
statistical measures are also available for analyzing
suitability of the sample size. Bartlett’s test of spheri-
city [33], and the Kaiser-Meyer-Olkin (KMO) measure
of sampling adequacy [34]. The Bartlett’s test of
sphericity should be significant (p < 0.05) and the
KMO index which ranges from 0 to 1, should be
greater than 0.6 for the PCA to be considered appro-
priate. These two measures for our dataset are shown
in Table 6.
Factorability of data samples are also confirmed

according to these measures. In order for feature rela-
tionship to be strong, correlation between features

Table 1 Demographic and clinical variables by diagnostic
group

NC
(n = 30)

AD
(n = 30)

Ρ Total

Gender(M/F) 15/15a 16/14 0.796

Age(M/SD) 77/5a 75/7 0.188

Years of Education(M/
SD)

16.2/2.9a 15.7/2.7 0.554

Baseline MMSE(M/SD) 29.3/0.8b 23.5/2.2 < 0.00001

PbvcSc-6 (M/SD) -0.36/0.59b -0.98/
0.95

0.005 -0.67/
0.87

Pbvc6-24 (M/SD) -1.24/0.89b -3.11/
1.23

< 0.00001 -2.17/
1.43

PbvcSc-24 (M/SD) -1.65/1.05b -4.13/
1.85

< 0.00001 -2.88/
1.95

Chi-square was used for gender comparison.

Unpaired student t-test was used for age, education-year, MMSE scores and
percentage of whole brain volume change (all three) comparisons.
a Indicates insignificant compared to NC group.
b Indicates significant compared to NC group.

Table 2 Normality test of atrophy rates using
kolmogorov-smirnov method

NC AD

PbvcSc-6 0.200* 0.125

Pbvc6-24 0.200* 0.200*

PbvcSc-24 0.200* 0.200*

*. This is a lower bound of the true significance

Table 3 Classification based on total mean thresholding

Threshold
Value

Sensitivity Specificity Accuracy

PbvcSc-6 (M/SD) -0.66752 50% 60% 55%

Pbvc6-24 (M/SD) -2.17367 76.66% 83.33% 80%

PbvcSc-24 (M/
SD)

-2.88472 83.33% 93.33% 88.33%

*. Highest accuracy achieved by 24 month longitudinal atrophy rate
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should be at least 0.3 which is at this rate in our case
(Table 5).

• Step 2: Feature extraction

In this step the number of features involved in discri-
minating groups, should be specified. This involves bal-
ancing two contradicting needs which are the need to
find a simple solution with as few factors as possible
and the need to explain as much of the variance in the
original data set as possible. There are a number of
techniques that can be used to specify the number of
features to be kept. One of them is Kaiser’s criterion
[35], according to which, only features with an eigenva-
lue of 1.0 or more are retained. The eigenvalue of a fea-
ture represents the amount of the total variance
explained by that feature. Extracting features by this
method leads to selecting only one feature (Table 7).
The next test is known as Scree test [36]. It plots each

of the eigenvalues and inspects the plot to find a point
at which the shape of the curve changes direction
toward horizontal or an elbow. Keeping all factors above
the elbow is recommended, as these features contribute
the most to the explanation of the variance in the data
set. In the case of our study, two of the features settle
above the elbow and can be kept (Figure 4).
Other method in determining number of features is

parallel analysis [37]. Parallel analysis involves compar-
ing the value of the eigenvalues with those obtained
from a randomly generated data set of the same size.
Only those eigenvalues that exceed the corresponding

values from the random data set are kept. According to
this analysis, only one of features can be kept (Table 8).
Regarding to the three abovementioned methods, only

one of the features must be selected for discriminating
subjects. Referring to the Table 7, it carries 79.371% of
total variance among data which seems not satisfactory.
Indeed, PCA is used as a data exploration technique, so
the interpretation and the way we use it is up to our
judgment, rather than any hard and fast statistical rules.
Here in this article, it is supposed that the algorithm is
interested only in components that have an eigenvalue
of 0.6 or more. By extracting two uncorrelated features,
with which 99.863% of total variance among data will be
carried, which is highly satisfactory.
To investigate the contribution degree of initial fea-

tures in newly extracted ones, refer to Table 9. It can be
seen from this table that most of the features load quite
strongly (above 0.4) on them (except PbvcSc-6 on PC2).
As expected, the new extracted features are highly

uncorrelated (Table 10).
DA can be carried on by these two newly extracted

uncorrelated features.
Calculated unstandardized canonical discriminant

function is:

ds = (0.347 ∗ PC1) − (0.592 ∗ PC2) + 2.062 (1)

With ds as discriminant score, Table 11 shows the
mean of ds for two groups of subjects which are con-
spicuously far apart each other.

Figure 3 Receiver Operating Characteristic curve plot for (a) Baseline to 6th month atrophy rate, (b) 6th month to 24nd month atrophy
rate, (c) Baseline to 24nd month atrophy rate. It is conspicuous that using long term atrophy rates for diagnosis, leads to higher accuracy.

Table 4 cross validation results

Predicted

NC AD

Original NC 90% 10%

AD 20% 80%

85% of cross-validated cases correctly classified

Table 5 correlation coefficients

PbvcSc-6 Pbvc6-24 PbvcSc-24

PbvcSc-6 1 0.394 0.749

Pbvc6-24 0.394 1 0.899

PbvcSc-24 0.749 0.899 1

*. High correlation between PbvcSc-24 and two other features
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To measures the association between the ds and the
groups, Canonical correlation should be considered
(Table 12). A high value (near 1) shows that the func-
tion discriminates quite well.
With regard to canonical correlation of 0.671 in this study,

discrimination power of these extracted features is conceived
as moderate. Wilk’s Lambda shows the proportion of the
total variance (55%) in the ds not explained by differences
among groups (Table 13). A small Lambda value (near 0)
indicates that the group’s mean ds differs. The Sig (p <
0.001) is for the Chi-square test which indicates there is a
highly significant difference between the groups’ centroids.
To investigate the impact of each extracted feature on

the discriminant function, correlation (in order of
importance) of each feature with the ds is calculated
(Table 14). It is revealed that PC1 has highest impact on
discrimination process.

3. Results and discussion
As the final stage in DA, the classification results are
summarized in Table 15.
Results show that there is not any improvement in the

accuracy of the model with two extracted features (PC1-
PC2) compared to PBVCsc24 alone (88.33%). To indi-
cate that the discriminatory power of the classification is
statistically better than done by chance (50%), Press’s Q
statistic is used to compare with the critical value (6.63)
from the Chi-square distribution.

press’s Q statistic =
[N − nk]2

N(k − 1)
(2)

where N is total sample size, n is the number of cor-
rectly classified patterns and k is the number of different
groups. It is evaluated to 35.27 which is greater than the
critical value of 6.63:

[60 − 53 ∗ 2]2

60(2 − 1)
=
462

60
= 35.27

So, the results of achieved classifier are better than
classified by chance. To evaluate the generalization
capacity of this classifier, we involved leave-one-out
cross validation method. Results are shown in Table 16.
Compared to the generalization results of initially

selected features in Table 4, it can be seen that the accu-
racy of the diagnosis using two extracted uncorrelated
features (PC1-PC2) improves, compared to PBVCsc24
alone for about 3.33%. It is revealed in Table. 17.

4. Conclusion
Findings of the study disclose that in longitudinal analy-
sis of brain atrophy rate for diagnosing AD subjects,
incorporating some intermediate (between baseline and
follow up) MRI scans and using their corresponding
atrophy rates in uncorrelated form or principal compo-
nents of them, can improve the accuracy of diagnosis
specially from generalization aspect.
In spite of this improvement, linear classifiers cannot

discriminate subjects with the highest accuracy expected
in the ROC curve. Consequently, nonlinear classifiers
such as kernel support vector machine (SVM) must be
invoked to achieve a higher accuracy of diagnosis. This
is mainly because of nonlinear nature of atrophy rate
between the subjects.

Appendix
Cross validation
In k-fold cross-validation, the initial data set is randomly
partitioned into k non-overlapping subsets or “folds”
(D1, D2, ... , Dk) each of which with approximately equal
size. Training and testing is performed k times. In itera-
tion i, subset Di is reserved as test set, and the remain-
ing subsets are collectively used to train the model. To
put it simple, in the first iteration, subsets D2, ... , Dk are
used as the training set in order to obtain a first model,
which is tested on D1; the second iteration is trained on
subsets D1, D3, ..., Dk and tested on D2, and so on. For
classification, the accuracy estimation is the overall
number of correct classifications from the k iterations,
divided by the total number of tuples in the initial data.
Leave-one-out is a special case of k-fold cross-valida-

tion where k is set to the number of initial tuples. That
is, only one sample is left out at a time for the test set.

Principal Component Analysis (PCA)
It is a way of identifying patterns in data, and expressing
the data in such a way as to highlight their similarities
and differences [38]. The other main advantage of PCA
is that once you have found these patterns in the data,
you can compress the data by reducing the number of
dimension, without much loss of information. This tech-
nique is used in feature extraction to reduce feature
space dimension and make features more discriminative.

Table 6 KMO and Bartlett’s Test

KMO Measure of Sampling Adequacy 0.221 0.646

Bartlett’s Test of Sphericity Approx. Chi-Square 292.451

df 3

Sig. < 0.00001

KMO measure is greater than 0.6 and test of sphericity is significant

Table 7 Parallel analysis

Component Total Eigenvalues Random Eigenvalues

1 2.381 1.1624

2 .615 0.998

3 .004 0.8396

*. Eigenvalues of the real and random generated features
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Figure 4 Breaking happens in feature 2.

Table 8 Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings

Component Total % of Variance Cumulative % Total % of Variance Cumulative %

1 2.381 79.371 79.371 2.381 79.371 79.371

2 .615 20.492 99.863

3 .004 .137 100.000

Extraction Method: Principal Component Analysis

Table 9 component matrix

Features Extracted feature 1 (PC1) Extracted feature 2 (PC2)

PbvcSc-24 0.997 0.613

Pbvc6-24 0.874 -0.485

PbvcSc-6 0.789 -0.061

Pattern of loading for extracted features

Table 10 within group CORRELATION MATRIX

Features PC1 PC2

PC1 1 -0.099

PC2 - 0.099 1

Extracted features are highly correlated

Table 12 Eigenvalues

Function Eigenvalue % of
Variance

Cumulative
%

Canonical
Correlation

1 .820a 100.0 100.0 .671

Canonical discriminant function were used in the analysis

Table 11 discriminant function at group Centroid

Group Mean ds

NC 0.89

AD - 0.89

Unstandardized canonical discriminant functions evaluated at group means

Table 13 Wilks’ Lambda

Test of Function(s) Wilks’ Lambda Chi-square df Sig.

1 0.55 34.124 2 < 0.00001

Centroids of groups are significantly different

Table 14 Structure Matrix

Group Mean ds

PC1 0.927

PC2 - 0.466

First extracted feature has highest correlation with ds

Farzan et al. Diagnostic Pathology 2011, 6:105
http://www.diagnosticpathology.org/content/6/1/105

Page 7 of 9



PCA involves the eigenvalue decomposition of data
covariance matrix to generate features that are optimally
uncorrelated

I(i1, i2, i3, · · · , im) = AT · P(p1, p2, p3, · · · , pn)
Where P is the original pattern of features and I is the

pattern of uncorrelated features. A is the eigenvalue of
covariance matrix.
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