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Optical endomicroscopy and the road to
real-time, in vivo pathology: present and future
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Abstract

Epithelial cancers account for substantial mortality and are an important public health concern. With the need for earlier
detection and treatment of these malignancies, the ability to accurately detect precancerous lesions has an increasingly
important role in controlling cancer incidence and mortality. New optical technologies are capable of identifying early
pathology in tissues or organs in which cancer is known to develop through stages of dysplasia, including the esophagus,
colon, pancreas, liver, bladder, and cervix. These diagnostic imaging advances, together as a field known as optical
endomicroscopy, are based on confocal microscopy, spectroscopy-based imaging, and optical coherence tomography
(OCT), and function as “optical biopsies,” enabling tissue pathology to be imaged in situ and in real time without the need
to excise and process specimens as in conventional biopsy and histopathology. Optical biopsy techniques can acquire
high-resolution, cross-sectional images of tissue structure on the micron scale through the use of endoscopes, catheters,
laparoscopes, and needles. Since the inception of these technologies, dramatic technological advances in accuracy, speed,
and functionality have been realized. The current paradigm of optical biopsy, or single-area, point-based images, is slowly
shifting to more comprehensive microscopy of larger tracts of mucosa. With the development of Fourier-domain OCT, also
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coherence tomography, Optical imaging

known as optical frequency domain imaging or, more recently, volumetric laser endomicroscopy, comprehensive
surveillance of the entire distal esophagus is now achievable at speeds that were not possible with conventional OCT
technologies. Optical diagnostic technologies are emerging as clinically useful tools with the potential to set a new
standard for real-time diagnosis. New imaging techniques enable visualization of high-resolution, cross-sectional images
and offer the opportunity to guide biopsy, allowing maximal diagnostic yields and appropriate staging without the
limitations and risks inherent with current random biopsy protocols. However, the ability of these techniques to achieve
widespread adoption in clinical practice depends on future research designed to improve accuracy and allow real-time
data transmission and storage, thereby linking pathology to the treating physician. These imaging advances are expected
to eventually offer a see-and-treat paradigm, leading to improved patient care and potential cost reduction.
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Introduction

Cancers affecting the mucosal tracts are a substantial
public health concern. Indeed, the incidence of esopha-
geal adenocarcinoma (EAC) has increased dramatically
in the United States [1,2] as well as most other Western
developed societies [1]. The increased incidence is par-
ticularly alarming among US white men, which jumped
463% between 1975 and 2004 [2]; increases have also
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been observed in Europe, Australia, and New Zealand
[3]. Age-standardized rates of EAC have increased up to
40% every 5 years in England and Wales [4], while an-
nual increases in incidence rates of up to 5%, 5%, 6%,
and 12% have been observed in Scotland, Scandinavia,
France, and Switzerland, respectively [1,3,5,6]. EAC has
a substantial impact on mortality, with a low 5-year sur-
vival rate (16.8%) [7]; overall, esophageal cancer has be-
come the eighth most common cause of cancer death
worldwide [1,3]. In contrast to esophageal cancer, the
overall incidence rates of colorectal [8] and cervical
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Table 1 Comparison of current and investigational imaging technologies
Radiology Endoscopy Endomicroscopy
Resolution 1cm T mm 100 um ~100 um 10 um 1 um
Field of view 50+ cm 30+ cm 2-5cm 140° 3 mm 0.3 mm
Technology Radio nucleotide, MR, CT, US EUS, IVMR, Standard and OFDI, OCT SECM, Micro OCT,
DOT, PET X-ray high-definition FFOCM
video endoscopes
Organ Organ Organ Tissue surface Architectural Cellular
Thallium MRI us White light ocT* (@Y
*Volumetric.

CM = confocal microscopy; CT = computed tomography; EUS = endoscopic ultrasound; IV = intravenous; FFOCM = full-field optical coherence microscopy;
MRI = magnetic resonance imaging; OCT = optical coherence tomography; OFDI = optical frequency domain imaging; PET = positive emission tomography;

SECM = spectrally encoded confocal microscopy; US = ultrasound.

cancers [9] have declined in the past several decades,
but rates of gastric adenocarcinoma have remained rela-
tively stable [10]. Despite these trends, colorectal cancer
is still the third most common cancer worldwide, with
the highest age-standardized incidence rates in Australia/
New Zealand (45.7 per 100,000 men) and Western and
Southern Europe (41.2 and 39.3 per 100,000 men, re-
spectively) [11]. Colorectal cancer is the third leading
cause of cancer mortality in men and women in the
United States and accounts for 8% of all cancer deaths
worldwide, with the highest mortality rates in Central
and Eastern Europe [11]. Cervical cancer is the third
most common cancer in women, with an estimated
530,000 new cases worldwide in 2008; incidence and
mortality are lower in more developed areas such as
Europe and North America than in developing countries
in Africa and South America [11]. Gastric cancer is the
fourth most common malignancy in the world (989,000
new cases occurring in 2008) and the second leading
cause of cancer death (738,000 deaths worldwide), with
the highest mortality rates in Eastern Asia and Central
and Eastern Europe [11].

Given the incidence and mortality associated with epi-
thelial cancers, effective strategies for early detection
and treatment of premalignant lesions are essential. The
benefits of early detection have been clearly demon-
strated in cervical cancer, with population-based and co-
hort studies indicating that regular Pap screenings have
decreased cervical cancer incidence and mortality by at
least 80% [12]. Similarly, Barrett’s esophagus (BE) has
been recognized as the premalignant lesion of EAC
[13,14]. A growing number of studies have shown that
regular endoscopic BE surveillance identifies patients with
earlier stage cancer [15-17], leading to higher survival

rates than more advanced disease [16]. Several retrospect-
ive studies have indicated that survival is prolonged if
esophageal cancers are detected by endoscopic surveillance
rather than by presenting symptoms [13,15,18].

This review discusses the substantial progress under
way in endoscopic imaging, including the present state
of technology, current approaches to imaging research,
and the potential impact of these techniques on daily
clinical practice in the near future.

Paradigms in endoscopic biopsy: applications and
limitations

Current approaches to endoscopic biopsy use external
imaging, such as computed tomography (CT), magnetic

. A

Figure 1 Two types of confocal endomicroscopy systems are
currently available in the United States. A mini-probe based
system (MaunaKeaTechnology, France; upper panel) can be used
through the working channel of most conventional endoscopes. In
the confocal laser endomicroscope (Pentax, Japan; lower panel), the
laser scanner is integrated into the endoscope. Reprinted with
permission from Goetz M, Kiesslich R [33].
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resonance (MR), or white light endoscopy, to image sus-
pect tissue. Despite advances in the field of endoscopic
imaging, technical limitations of these modalities exist.
These limitations may have important clinical implica-
tions, especially in optimizing cancer screening, diagno-
sis, and surveillance in the detection and histological
assessment of premalignant lesions. For example, treat-
ment guidelines for recognizing EAC and preventing
mortality are largely based on endoscopic surveillance of
patients with chronic, symptomatic gastroesophageal re-
flux disease and those with BE as well as use of histo-
pathological assessment to evaluate the risk of BE
progression to EAC [13,14,19]. Although currently con-
sidered the gold standard for surveillance [19], white
light endoscopy is limited to the surface of the mucosa
and depends on clinical changes to signify underlying
disease. External sources (CT/MR) typically lack suffi-
cient resolution to provide accurate guidance for biopsy
location determination.

When BE is identified, targeted biopsies and four-
quadrant, random biopsies are obtained to detect invis-
ible neoplasias [14,19,20], but these strategies may be
unreliable [21] because of sampling error and other
practical limitations. When performed appropriately, a
random sampling technique reduces the area of tissue
surveyed, covering as little as 5% of the surface area of
BE tissue [22]. Mucosal irregularities of early neoplasias
are often discrete and easily missed during standard BE
surveillance endoscopy [20]. In surgical resection speci-
mens, up to 43% of patients with confirmed high-grade
dysplasia had adenocarcinomas that were missed before
surgery, despite the use of endoscopic biopsy [23]. Given
the small amounts of histologically ambiguous tissue
retrieved, the potential for diagnostic misinterpretation
and variability among pathologists is considerable, a
problem that has been demonstrated in several studies
[22,24-26]. The time delay between endoscopy and diag-
nosis is another limitation, with separate procedures
required for the detection and treatment of dysplasia
[26]. The current biopsy approach is uncomfortable and
time consuming for patients, often requiring a lengthy
period of sedation and posing risks of bleeding and per-
foration [20,27]. The limitations of current imaging and
biopsy methods represent an unmet need in the early
detection of mucosal dysplasias.

Current and investigational technologies for in vivo
imaging

Unlike current techniques, newly developed in vivo imaging
technologies offer the potential to guide biopsy and to
move toward real-time pathology. These tools may enable
immediate optical histology of the mucosal layer during on-
going endoscopy, or virtual histology, allowing visualization
of living cells and cellular structure at and below the
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mucosal surface [28]. Compared with conventional
radiologic and endoscopic techniques, these newer tech-
nologies achieve higher-resolution microscopic images with
wider-ranging visualization of the target tissue (Table 1).

Confocal laser endomicroscopy
Confocal laser endomicroscopy (CLE), a recent endoscopic
advance, allows real-time high-resolution histologic analysis

Figure 2 Barrett’s mucosa with early mucosal adenocarcinoma
recorded with in vivo miniprobe confocal laser microscopy.
Neoplastic characteristics include irregular epithelial lining with
variable width (white arrows), increased cell density seen as dark
areas with variable fluorescein uptake (white triangle), fusion of
glands (black arrow), and irregular dilated blood vessels
(arrowheads). Reprinted with permission from Pohl H, et al. [37].
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et al. [43].

Figure 3 Neutrophils and microabscesses of H. pylori-positive gastric mucosa. (A) Neutrophils were identified by their nuclear features.
White arrow shows the mononuclear cell. (B) Microabscesses appeared in superficial epithelium and foveola. Reprinted with permission from Ji R,

of targeted tissue during endoscopy [29]. The CLE illumi-
nates tissue with a low-powered laser focused by an object-
ive lens into a single point within a fluorescent specimen
[30,31]. A confocal microscope is used to exclude light
above and below a plane of interest, thus allowing for an
optical section to be observed, similar to a histologic tissue
section [29]. The generated gray scale image represents one
focal plane within the examined specimen [31]. The mu-
cosa typically can be imaged to a depth of 100 to 150 um
with this technique [22].

Currently, two devices are available and have received
the CE Mark for use for CLE [29,32] (Figure 1 [33]), and a
third is under development. The endoscope-based CLE
(eCLE; Cellvizio®, Pentax Corporation, Montvale, NJ,
USA, and Tokyo, Japan) uses a confocal fluorescence
microscope integrated into the distal tip of a conventional
upper endoscope or colonoscope [29,30]. The probe-
based CLE (pCLE; Mauna Kea Technologies, Newtown,

PA, USA, and Paris, France) uses a fiber-optic probe bun-
dle with a laser microscope inserted through the accessory
channel of a standard endoscope [29,30]. Although lateral
and axial resolution is better with eCLE than with pCLE,
the eCLE is considerably bulkier [29]. The pCLE is more
useful in smaller spaces [29]; recent data demonstrated
the feasibility of using pCLE for visualization of intra-
abdominal organs, including liver, pancreas, spleen, and
lymph nodes in a porcine model [34]. Development of a
probe-based volumetric CLE device is under way.

Since 2004 when confocal endomicroscopy was first
used for diagnosing colorectal pathology [35], CLE has
shown promise in a number of clinical applications. In-
deed, CLE potentially may be used in the same manner
as endoscopic biopsy [36]. Both eCLE and pCLE have
had high accuracy (290%) in diagnosing BE and Barrett’s-
associated neoplastic changes (Figure 2) [37,38]. CLE also
can detect lymphocytic and collagenous colitis in chronic

Figure 4 SECM and histopathological images of BE stained with 0.6% acetic acid. (A) Large-area SECM image shows columnar epithelium
(arrowhead) and squamous epithelium (arrow). (B) Histopathologic image demonstrates squamoglandular junctional mucosa.

(C) High-magnification SECM image shows the presence of goblet cells (arrow). (D) High-magnification histopathological image shows BE with
the presence of goblet cells (arrow). Scale bars represent 250 um. Reprinted with permission from Kang D, et al. [50].
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Figure 5 Comparison of depth, area, and images achieved with a/LCl and confocal microscopy. Typical a/LCl data. (A) Angle-resolved
depth scan of light scattered from tissue. Lighter shades of gray indicate increased amount of scattered light. (B) Amplitude scan indicating
depth increments used for processing. Tissue layers are labeled, and gray bar indicates basal layer (optical coherence tomography). Example
angular scans for 3 tissue types pictured (solid line) with best-fit Mie theory solutions (dashed line) and size indicated. Reprinted with permission
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diarrhea [39,40], identify the microarchitecture of early gas-
tric cancer [41,42], detect Helicobacter pylori infection with
high accuracy (Figure 3) [43], and detect villous atro-
phy in celiac disease [44]. Preliminary data have shown
that CLE can detect malignant changes in pancreatic tissue
[45] and premalignant changes in peripheral lung nodules
[46], urothelium [47], and cervical epithelium [48].
Although commercially available, the place of CLE in
current diagnostic paradigms versus a conventional histo-
pathological examination is still evolving [30]. With appro-
priate contrast agents, CLE has the potential for subcellular
resolution, reducing the number of biopsies required [29],
as well as for molecular characterization [49]. However,
available CLE devices have a narrow field of view and can-
not penetrate beyond the mucosa, allowing visualization of
only superficial mucosal layers [29,30]. Moreover, CLE does
not provide an archive of tissue for full molecular
characterization [29], and contrast agents can limit the pro-
cedure duration and ability to obtain repeat images [22].

Spectrally encoded confocal microscopy

Spectrally encoded confocal microscopy (SECM) is a
high-speed technique based on reflectance imaging
technology [50]. This method couples broadband or
wavelength-swept narrowband light into a single optical
fiber, which then illuminates a transmission grating and
objective lens at the end of the confocal probe to
encode one-dimensional spatial information reflected
from a sample [50-52]. Because SECM detects spatial
information externally to the probe, it can obtain highly
detailed images at very high speeds (up to 10 times fas-
ter than the video rate), while the size of the optics is
small enough to be incorporated into a small-diameter
catheter or endoscope [50,51]. The SECM allows for
large field confocal images without the need for contrast
agent and may permit the imaging of extended areas of
tissue [50,51,53]. Given that SECM can achieve, in

principle, comprehensive confocal endomicroscopy of
the entire distal esophagus, this technology is being
investigated for imaging upper gastrointestinal (GI)
tissues [50]. Preliminary assessment indicates that
SECM can reveal the architectural and cellular features of
gastroesophageal tissues, including the presence of goblet
cells, columnar epithelium, and squamous epithelium in
BE (Figure 4) [50,52]. A recent study in eosinophilic
esophagitis showed that SECM of biopsy samples was
functional in accurately providing eosinophil counts, as

Figure 6 OCT image of colon adenoma (2-o’clock position). A
well-organized linear crypt pattern is not present and image is
darker because of altered light scattering compared with the
nondysplastic mucosa as seen in the normal mucosa running
horizontally in the 6-o'clock position. The marks of the vertical and
horizontal axes are 1 mm apart. Reprinted with permission from

Pfau PR, et al. [74].
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well as in identifying microscopic abnormalities such as
abscess, degranulation, and basal cell hyperplasia [54].

Spectroscopy-based imaging

Angle-resolved low coherence interferometry (a/LCI), a
light-scattering technique, identifies early dysplasia based
on nuclear diameter differences [22,26,55]. This method
measures the angular distribution of scattered light as a
function of depth beneath the tissue surface [26] and
achieves depth resolution through a process similar to
that used in optical coherence tomography (OCT)
[22,26]. The a/LCI device can assess nuclear size at mul-
tiple depths [22], with deeper penetration than confocal
microscopy approaches (up to 200-300 pm of the epi-
thelial tissue layer compared with the surface and upper-
most 100 pm of tissue with endoscopic confocal
microscopy) [26,55]. The a/LCI data are analyzed and
reported according to a best-fit analysis (Figure 5), with
nuclear measurements in cell and tissue types reported with
an accuracy of 0.2 to 0.3 pm [22]. The a/LCI device can
provide instant high-resolution images non-invasively with-
out the need for image interpretation by an endoscopist or
administration of contrast agents [26].

Recent clinical studies have explored a/LCI in the assess-
ment of dysplasia in esophageal [26] and intestinal [55] tis-
sues. In the first in vivo clinical study of a/LCI, 46 patients
undergoing routine endoscopic surveillance for BE were
scanned with the a/LCI system and the results correlated
with an endoscopic biopsy specimen [26]. The nuclear
size measurements generated for deep epithelial tissue
(200-300 pm beneath the surface) separated dysplastic
from non-dysplastic tissue with an accuracy of 86%, using a
cutoff of 11.84 um to separate the two types [26]. Using this
same cutoff, a/LCI distinguished dysplastic BE specimens
from indeterminate and non-dysplastic BE with a sensitivity
of 100% (13/13; 95% confidence interval [CI], 0.75—-100)
and a specificity of 85% (76/89; 95% CI, 0.76—0.92) [26].
Similarly, a pilot ex vivo study of 27 patients undergoing
partial colonic resection demonstrated high diagnostic
value of this method at a depth 200 to 300 um beneath the
mucosal surface, with a/LCI separating dysplastic from
healthy intestinal tissues with a sensitivity of 92.9%, a speci-
ficity of 83.6%, and an overall accuracy of 85.2% [55].

Several other spectroscopy-based imaging techniques
are under investigation in various clinical applications.
Laser-induced fluorescence is a technique based on the
principle that certain compounds exhibit a characteristic
fluorescence emission when excited by light [56]. This
technology has been shown to detect malignant colonic
tissue [57] and to distinguish malignant tissue from meta-
plastic and normal tissue in BE [56,58]. Multimodal hyper-
spectroscopy is based on tissue fluorescence and reflected
light measurements, which are analyzed with computed-
based algorithms to differentiate between abnormal and
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Figure 7 Optical coherence tomography (OCT) images. (A) OCT
image of normal cervical tissue, showing a well-organized, three-
layer architecture (optical structure) with sharp borders. The thin
basement membrane (BM) could not be resolved by OCT. However,
because the basement membrane separates the epithelium (EP)
from stroma (ST), a sharp interface could be visualized (length of the
white bar: T mm). (B) OCT image showing a cervical intraepithelial
neoplasia (CIN-3) lesion. The intensity of the stromal layer increases
with less-organized layer architecture. The stroma seemed to push
its way towards the surface as vertical columns. (C) OCT image
showing invasive carcinoma. The tissue surface is an unstructured
homogeneous highly backscattering region with a complete lack of
layer architecture (optical structure). The basement membrane is no
longer intact or defined and the tissue microstructure is no longer
organized. Reprinted with permission from Gallwas J, et al. [76].
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permission from Vakoc BJ, et al. [70].
.

Figure 8 High-resolution images from VLE. (A) A comprehensive vascular map derived from the structural image set. (B-D) Cross-sectional
images at the indicated locations. Arrows indicate corresponding vessels in the vascular map and cross-sectional images. Reprinted with

normal tissues [59]. Although more extensively explored
for use in detecting cervical cancer [59,60], clinical studies
in BE patients are under way [61].

Optical coherence tomography

OCT is an imaging technique first introduced for use in bio-
logical tissues in 1991 [62] that generates high-resolution,
cross-sectional, subsurface images by using low-coherence
interferometry to measure the echo time delay and intensity
of back-scattered light [63]. OCT is analogous to ultrason-
ography, except that OCT measures the intensity of infrared
light rather than sound waves [64]. With OCT, depth inten-
sity is measured by time-domain measurements, allowing
for image construction for all three dimensions.

Since its use was first described in ophthalmology to
image the transparent structures of the anterior eye and
retina [65], OCT has evolved to include a wide spectrum
of clinical applications. The successful use of OCT im-
aging techniques has been described in many biologic
tissues, including human coronary arteries [66,67];
esophageal [68-71], gastric [72,73], and intestinal [74]
tissues (Figure 6); pancreatic and biliary tissues [75]; cer-
vical epithelium (Figure 7) [76]; and urologic tissues
[77]. Extensively studied in GI applications [72,74,78],
OCT has shown accuracy in diagnosing specialized in-
testinal metaplasia in BE with a sensitivity of 81%
[71,79].

Several OCT systems are currently in use or under in-
vestigation. The original OCT technology, now called
time-domain OCT (Niris®, Imalux Corporation, Cleveland,
OH, USA) [80,81], has been described in detail elsewhere
[64,78]. Interferometric synthetic aperture microscopy uses
computed imaging and synthetic aperture techniques to
modify OCT signals to achieve three-dimensional,
spatially invariant resolution for all depths in a cross-
sectional scan [82-84]. The feasibility of using this

technology to image human breast tissue has recently
been demonstrated [83,84].

Despite the diagnostic potential of time-domain OCT,
its relatively slow imaging speed has precluded its ability
to survey large areas of the GI tract, limiting its use to
point-sampling with a field of view comparable to that
of conventional biopsy [70,85]. However, a new techno-
logic approach to OCT allows dramatic increases in im-
aging speed without compromising image resolution or

Figure 9 High-resolution images from VLE. (A) A transverse
cross-sectional image showing all architectural layers of the
squamous mucosa, including the epithelium (e), lamina propria (Ip),
muscularis mucosa (mm), submucosa (sm), and muscularis propria
(mp); because of the large change in esophageal circumference
during imaging (56 mm) and after resection (~22 mm), the cross-
sectional image is displayed over a proportionately larger width. (B)
Representative histology from the same swine (H&E, orig. mag. x2).
Reprinted with permission from Vakoc BJ, et al. [70].
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Figure 10 OFDI images obtained from patients with a normal-appearing stomach and esophagus by endoscopy. (A) OFDI image of
squamous mucosa. (B) Expanded view of A demonstrates a layered appearance, including the epithelium (e), lamina propria (Ip), muscularis
mucosa (mm), submucosa (sm), and muscularis propria (mp). Vessels are clearly identified in the submucosa (arrows). (C) OFDI image of gastric
cardia. (D) Expanded view of C demonstrates vertical pit and crypts, regular, broad architecture, high surface backscattering, and diminished
image penetration. Tick marks in A and C and scale bars in B and D represent T mm. Reprinted with permission from Suter MJ, et al. [68].

quality [70,86-88]. This technology, referred to as measure the delay of reflections from within the tissue
Fourier-domain OCT [81] or optical frequency domain  sample [70]. Interferometry is used to measure the delay
imaging [70], is also called volumetric laser endomicro- intervals, while Fourier transformation is used to com-
scopy (VLE). VLE acquires cross-sectional images by pute traditional A-lines, or depth scans, which comprise
using a focused, narrow-diameter beam to repeatedly the tissue reflectivity as a function of depth along the

L

Figure 11 Barrett’s esophagus with dysplasia. (A) Videoendoscopic image reveals a patchy mucosa consistent with SIM. (B) Histopathologic
image of the biopsy specimen taken from the SCJ demonstrates intestinal metaplasia and low-grade dysplasia (H&E, orig. mag. °-2). (C) Cross-
sectional OFDI image demonstrating regions consistent with SIM without dysplasia (blue arrow) and specialized intestinal metaplasia with high
grade dysplasia (black arrow). (D) Expanded view of C taken from the region denoted by the blue arrow in C, demonstrating good surface
maturation (arrowheads), which is consistent with SIM without dysplasia. (E) Expanded view of C taken from the region denoted by the black
arrow in C, demonstrating features consistent with high grade dysplasia, including poor surface maturation (black arrowheads) and the presence
of dilated glands (red arrowheads) in the mucosa. (F) A longitudinal slice highlights the transition from gastric cardia, through a 9-mm segment

of specialized intestinal metaplasia and finally into squamous mucosa. Scale bars and tick marks represent 1 mm. Reprinted with permission from
Suter MJ, et al. [68].
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beam. Unlike time-domain OCT, VLE uses a fixed wave-
length or swept-source technology in which the wave-
length of a monochromatic light source is rapidly
scanned to measure the interference signal as a function
of wavelength [70,87].

The use of a balloon-based VLE system with helically
scanning optics for esophageal imaging has been described
[68-70,85]. With this system, the optical components of
the catheter are positioned with the esophageal lumen via
a balloon-centered probe [70,85]. After the balloon is
inflated, the distal esophagus is dilated and the imaging
optics become centered. Optics are slowly pulled back
during the imaging procedure while the imaging optics
are rotated by a probe scanner; thus, the entire portion of
the esophageal lumen that was in contact with the bal-
loon is scanned in a helical or circumferential fashion
[70]. Real-time, volumetric images are obtained by
scanning the imaging beam over the tissue surface in
two dimensions [69].

Preliminary data for the VLE system have shown its
ability to image the entire distal esophagus at a higher
speed and greater sensitivity compared with time-
domain OCT [70,85]. VLE enables full-length surveil-
lance of target areas with a combination of resolution
and depth of surface penetration (3-mm penetration,
<10-um resolution depth) [52]. When used in swine
models, VLE provided high-resolution images of the
anatomic layers and vasculature from the distal esopha-
gus and gastroesophageal junction (Figures 8 and 9)
[70]. In the first clinical experience with this technique,
VLE successfully imaged the microscopic architecture of
the distal esophagus in 10 of 12 patients undergoing rou-
tine esophagoduodenostomy for BE screening and surveil-
lance (Figures 10 and 11), with volumetric images acquired
in less than 2 minutes [68]. Most recently, the feasibility of
VLE-guided biopsy with laser marking was demonstrated
in swine esophagus, a strategy with the potential to in-
crease the diagnostic accuracy of current surveillance pro-
tocols and to guide interventional treatments [69].

Roles and impact of the advances in optical biopsy

In vivo pathology imaging devices and the rapid evo-
lution of the technology have the potential to make
real-time diagnosis the new standard, with immediate
diagnosis and management during endoscopy. The
new optical biopsy technologies provide better quality,
detailed, high-resolution images and allow visualization
of living cells and cellular structures at and below the
mucosal surface during ongoing endoscopy [28,35].
The convergence of imaging and pathology may pro-
vide distinct advantages in cancer detection and diag-
nosis without the limitations and risks inherent with
biopsy procedures. With these technologies, maximal
diagnostic yields may be obtained, leading to appropriate
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staging through guided biopsy while minimizing the fre-
quency and error potential of random biopsy protocols. In
vivo cellular information can be delivered before biopsies
are performed, or imaging files may be transmitted with
biopsies, potentially improving the efficiency and accu-
racy of diagnosis.

Despite the potential these techniques may offer to
standard clinical practice, barriers remain. Optical biopsy
techniques can identify neoplastic changes in a variety of
biologic tissues, but prospective studies in large cohorts
are needed to establish concrete sensitivity and specifi-
city of the respective technologies, in each target organ,
versus the need for biopsy. To achieve widespread clinical
adoption, these technologies must be accurate, efficient
for use in the endoscopic setting, reliable, user-friendly,
patient-friendly, and cost-effective [22,89]. Wide acceptance
and interpretation capabilities, which require comprehen-
sive physician education and training, are also necessary to
establish appropriate comfort with use. Investigators are
currently working to improve the accuracy, speed, and ease
of interpretation of these technologies [89]. In addition, re-
search is under way to allow real-time data transmission
and storage, thereby linking pathology results to the trea-
ting physician.

Conclusion

As epithelial malignancies move toward earlier detection
and treatment, the ability to accurately detect precancer-
ous lesions has an increasingly important role in con-
trolling cancer incidence and mortality. With new
optical techniques, high-resolution images of early neo-
plastic changes in various tissues and organs can now be
captured in real time through endoscopes, catheters,
laparoscopes, and needles [78]. Although the diagnostic
potential of these technologies is rapidly expanding,
their clinical adoption will depend on present and future
research demonstrating improved imaging performance
and functionality, and the development and acceptance
of new guidelines for imaging [78]. Novel optical im-
aging technology offers the opportunity to utilize a see-
and-treat paradigm, potentially leading to improved patient
care and cost reduction.
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