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Abstract

Background: Melanoma is a deadly disease affecting people worldwide. Genetic studies have identified different
melanoma subtypes characterized by specific recurrently mutated genes and led to the successful clinical
introduction of targeted therapies. Hotspot mutations in SF3B1 were recently reported in uveal melanoma. Our aim
was to see if these mutations also occur in cutaneous melanoma.

Findings: We analyzed a cohort of 85 cutaneous melanoma including 22 superficial spreading, 24 acral-lentiginous,
36 nodular, and 3 lentigo-maligna melanomas. Exon 14 of SF3B1, containing the site of recurrent mutations
described in uveal melanoma, was sequenced in all samples. Additionally, NRAS exon 1 and 2 and BRAF exon 15
were sequenced in all, KIT exons 9, 11, 13, 17, and 18 in 30 samples. High numbers of BRAF and NRAS mutations
were identified with frequencies varying according to melanoma subtype. None of the samples were found to
harbor a SF3B1 mutation.

Conclusions: We conclude that recurrent mutations in codon 625 of SF3B1 as reported in uveal melanoma are not
present in most types of cutaneous melanoma. This highlights the genetic differences between cutaneous and
uveal melanoma and the need for subtype specific therapeutic approaches.
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Introduction
Malignant melanoma is a devastating disease worldwide
[1,2]. Curative management of melanoma is limited to
the stage of localized disease. Once metastatic spread
has occurred, prognosis of patients is poor. However, a
number of promising new treatment regimens have been
introduced recently, showing for the first time a therapy
induced increase in overall survival [3,4].
Over the last couple of decades a number of genetic

alterations have been identified in melanoma. Activating
driver mutations in genes such as NRAS [5] and BRAF [6]
were identified in cutaneous melanoma. Losses of tumor
suppressors such as CDKN2A and PTEN have been well
documented [7]. In uveal melanoma a different set of
genes shows recurrent mutations, including GNAQ and
GNA11 [8,9], with activating mutations as well as in BAP1
[10] showing inactivating mutations. The distinct
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mutation profiles of cutaneous and uveal melanoma are
striking and support a model of different developmental
pathways. However there is some overlap in tumor biol-
ogy as ~80% of blue nevi, which are benign melanocytic
tumors of the skin, also harbor GNAQ or GNA11 muta-
tions, [8] and BAP1 mutations can be found in both cuta-
neous nevi and cutaneous melanoma [11-14].
Both genetic and immunohistological assays are

becoming more and more relevant in determining the
dignity and prognosis of melanocytic neoplasms [15-18].
Further refining which biomarkers are relevant in which
settings should allow pathologists and clinicians to make
more detailed diagnostic calls, leading to appropriate
follow-up and treatment decisions.
Recently a recurrent mutation hotspot in SF3B1 affect-

ing codon 625 was found in 18.6% of uveal melanoma
[19]. SF3B1 mutations had been previously detected in
myeloid malignancies such as CLL (chronic lymphoid
leukemia) and MDS (myelodysplastic syndrome) [20,21]
and also reported in breast cancer [22]. SF3B1 is a splice
factor, with mutations expected to result in altered pre
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mRNA splicing. However the exact target of altered spli-
cing is unknown and might be cell type dependent [22].
The goal of our study was to analyze if SF3B1 muta-

tions not only play a role in uveal, but also in cutaneous
melanoma.

Material and methods
Sample selection and histopathology
Cutaneous melanoma samples were obtained from the
tumor bank of the Department of Dermatology, University
Hospital, University Duisburg-Essen. The study was
done with approval of the local ethics committee of the
University of Duisburg-Essen.

DNA isolation
10 μm-thick sections were cut from formalin-fixed, paraffin-
embedded tumor tissues. The sections were deparaffinized
and manually microdissected according to standard proce-
dures. Genomic DNA was isolated using the QIAamp DNA
Mini Kit (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions.

Direct (Sanger) sequencing
Nested PCR was performed to amplify BRAF exon 15
and NRAS exon 1 and 2 and sequenced as previously de-
scribed [23]. Sequencing of KIT exons 9, 11, 13, 17, and
18 was performed similarly. The first 120 base pairs of
SF3B1 exon 14 (covering codons 603–641) were sequenced
using the forward primer – TGTTTACATTTTAGGCTG
CTGGT and reverse primer – GCCAGGACTTCTTGCT
TTTG. After purification with the QIAquick PCR Purifica-
tion Kit (Qiagen) PCR products were used as templates for
sequencing in both directions. The sequencing chromato-
gram files were examined, and mutations were identified
using Chromas software (version 2.01, University of Sus-
sex, Brighton, United Kingdom).

Results
Sample cohort
The cohort included tumors from 51 males and 34 females,
including 22 superficial spreading, 24 acral-lentiginous, 36
nodular, and 3 lentigo-maligna melanomas, with an average
Table 1 Table of sequencing results

Oncogene mutation status

Total WT BRAF V600

Count Count % Count %

SSM 22 4 18.2% 13 59.1%

NM 36 12 33.3% 15 41.7%

ALM 24 13 54.2% 8 33.3%

LMM 3 1 33.3% 0 .0%

WT, Wildtype; SSM, Superficial spreading melanoma; NM, Nodular melanoma; ALM, A
available (amplification failed or sequence reads were ambiguous).
Breslow tumor thickness of 3.62 mm. The average thick-
ness between subtypes varied; acral-lentiginous melanoma
(ALM) = 4.54 mm, nodular melanoma (NM) = 4.47 mm,
superficial spreading melanoma (SSM) = 1.9 mm and
lentigo maligna melanoma (LMM) = 0.53 mm.

NRAS, BRAF, and KIT mutations
We analyzed 85 cutaneous melanomas in total. BRAF
Exon 15 and NRAS Exon 1 and 2 were analyzed for pre-
sence of mutations by Sanger sequencing (Table 1). We
identified 36 BRAF mutations (35 p.V600E, 1 p.V600K) and
19 NRAS mutations (11 p.Q61K, 3 p.Q61L, 5 p.Q61R).
In total, 65% of tumors showed either a BRAF or NRAS
mutation (42% BRAF, 22% NRAS). As reported previously,
the mutations were found to be mutually exclusive. Preva-
lence of BRAF and NRAS mutations varied by histologic
subtype; ALM - 33% BRAF, 13% NRAS, NM - 42% BRAF,
25% NRAS, and SSM - 60% BRAF, 23% NRAS mutations.
Presence of KIT mutations was analyzed in 30 cases. 18 of
these were in ALM in which the highest percentage of KIT
mutations would be expected (18/24 ALM total = 75%)
[24-26]. One ALM sample was found to harbor a p.N505H
(c.1513A > C) mutation/variant. We further analyzed
7 NM, 4 SSM, and 1 LMM, not identifying any KIT
mutations.

SF3B1 analysis
The first 120 base pairs of exon 14, containing the loca-
tion of the known hotspot mutation at codon 625, were
sequenced in all 85 samples. In four samples amplifica-
tion failed or sequence reads were ambiguous. None of
the remaining 81 samples showed a mutation in SF3B1
as seen in a control sample from a uveal melanoma
(Figure 1).

Discussion
Genetic classification of different melanoma subtypes
has become very important, especially with the introduc-
tion of effective therapies targeting genetic alterations
such as BRAF [3,4] and KIT mutations [25]. A detailed
understanding of the genetic events occurring in differ-
ent tumors will most likely prove critical to further
SF3B1

NRAS Q61 NA WT

Count % Count % Count %

5 22.7% 1 4.5% 21 95.5%

9 25.0% 3 8.3% 33 91.7%

3 12.5% 0 .0% 24 100.0%

2 66.7% 0 .0% 3 100.0%

cral lentiginous melanoma; LMM, Lentigo maligna melanoma. NA, Not



uveal 
melanoma

cutaneous
melanoma

mutation c.1873C>T (p.R625C)

wild type

Figure 1 Example of SF3B1 sequencing. Shown are representative
examples of SF3B1 exon 14 sequencing, with a wild type sequence of
a cutaneous melanoma on the top and a corresponding codon 625
mutation of a uveal melanoma on the bottom.
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improving the therapeutic modalities for metastasized
melanoma patients.
The distribution of activating oncogene mutations in

BRAF and NRAS in our cohort is comparable to those
reported elsewhere [7]. Overall 65% of melanoma had a
BRAF or NRAS mutation in a mutually exclusive pattern.
Of the three melanoma subtypes analyzed in consider-
able numbers (SSM, NM, ALM), percentages of BRAF
and NRAS mutations combined were highest in SSM
reaching 82%, lower in NM with 67% and lowest in
ALM with 46%. The KIT mutation/variant identified in
an ALM sample led to a p.N505V change. This is not
reported to be a frequent mutation in cutaneous melan-
oma [27]. However p.N505H (c.1513A > C) is listed as a
“variant of unknown origin” in a gastrointestinal stromal
tumor in the COSMIC database [28]. The cutaneous
ALM sample lacked mutations in BRAF or NRAS which
could support a potential relevance, as typically KIT mu-
tations are found to be mutually exclusive with BRAF
and NRAS mutations [26]. The p.N505H (c.1513A > C)
change could however also represent a rare germ-line
variant, which we could not check as corresponding
normal DNA was not available.
We obtained high quality sequencing results allowing

analysis of exon 14 and in particular codon 625 of
SF3B1 in 81 samples and found no mutations. This
argues against a major role for SF3B1 in tumorigenesis
or progression of cutaneous melanoma. In uveal melano-
mas, mutations were primarily found in tumors with a
favorable prognosis [19]. Future studies could analyze if
SF3B1 mutations occur in benign cutaneous melanocytic
tumors (nevi) or potentially in sites other than in codon
603–641 of exon 14 of SF3B1.
In recent years genetic analyses identified a number of

key genes involved in melanoma formation or progression.
Interestingly, almost all of those described in cutaneous
melanoma are not known to be relevant in uveal melan-
oma [29,30]. In contrast, genetic alterations in uveal
melanoma such as GNAQ and GNA11 mutations were
also found in selected cases of cutaneous melanoma and
are frequently found in blue nevi (benign cutaneous
melanocytic tumors) [9]. BAP1 inactivating mutations are
found in cutaneous nevi and melanoma, although consid-
erably less frequently than in uveal melanoma [12]. Our
current study would signify that SF3B1 mutations, occur-
ring in almost 20% of uveal melanoma, [19] do not play a
major role in cutaneous melanoma. We believe this high-
lights once more the genetic differences between uveal
and cutaneous melanoma and the need for development
of melanoma subtype specific therapies.
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