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Background
Despite significant improvements in computer vision
and image processing techniques, there are few software
tools that are able to analyze prostate biopsy images in a
fully automated way in order to find ROIs in those
images. In order to develop a useful system, user inter-
action should be minimized, and the system should also
be capable of dealing with images acquired at least at
10x magnification, since images of lower resolution do
not provide enough information for cancer diagnosis.
The segmentation of the ROI mentioned above is a

complex task that includes several challenges. The sup-
pression of user interaction means that the system should
be robust enough to deal with image irregularities by
itself. Such irregularities may include stain intensity var-
iations, tissue cuts, and even dust over the slide when it
is digitized. The physical size and memory requirements
of the images also limit the processing algorithms that
may be used, since we want our system to be used in per-
sonal computers (i.e. not clusters).
In recent years, there have been several studies that

focus on Hematoxilin and Eosin (HE) prostate biopsy
image processing and histological image analysis. Most of
them are focused on the segmentation of only one ROI,
usually the nucleus and glands, as well as the extraction of
descriptors for classification purposes. A thorough review
of the research related to classification may be found in
Bueno et al.[1]. Statistical information techniques, region
growing algorithms [2], fuzzy c-means [3] active contour
models, including level set methods [4,5], filtering and
morphological analysis [2,5,6] have been also used for ROI
detection. The main problem with these methods is that

they are not designed to process large amounts of data,
which is the case when working with whole digital slides
in pathology. Besides, many of these methods yield limited
results because they focus mainly on a single structure or
type of tissue.
None of the previous techniques use complete mosaics

or WSI but rather fragments or magnifications lower than
5x, with the exception of Doyle et al. [7] and Vidal et al.
[5]. Doyle et al. used 40x images ranging between 1-2 GB
and Vidal et al. worked with images acquired at low mag-
nification (5x, 10x) and up to 1.19 GB in size. One of the
problems with level set methods is that they are not suita-
ble for parallel processing. Moreover, level set methods
have not been used in a general way, only applied to one
type of histological images HE biopsies). In a recent work
by the authors [1], a general solution is described for par-
allelizing in an efficient way a set of heterogeneous low
and high-level image processing algorithms to be applied
to high resolution histopathological WSI. The imaging
tools implemented in [1] are general for all types of histo-
logical images with different stain, acquired from different
anatomical parts and digitized at different magnifications.
These tools deal with contrast analysis, ROI detection and
classification applied to high resolution images that range
from 300 MB to 30 GB.
The aim of this system that will be described herein is

the segmentation of ROIs from these images in a way
that mimics the method used by doctors, that is, identi-
fying at low magnification the regions with high concen-
tration of cells or where the architectural distribution
between lumen and cells is relevant. In this way this
work differs from those previously mentioned. The
method may be applied to different histological images
and are suitable for parallel processing, which differs
also from the method presented by Vidal et al. [5].
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Material and methods
A dataset of 200 biopsies stained with HE and provided
by the Department of Pathology, Hospital General Uni-
versitario de Ciudad Real (HGUCR) was used. The
images were digitized using an ALIAS II microscope,
from LifeSpan Biosciences Inc. This system acquires
tiles with a size of 2000 x 2000 pixels and 24 bits per
pixel (RGB). Each tile requires 11.4 MB. The ALIAS
microscope is equipped with five different objectives,
whose magnifications are 2.5x, 5x, 10x, 20x, and 40x.
We have focused on samples digitized with 10x magnifi-
cation, although our work could be easily adapted to be
magnification-independent. The images at 10x magnifica-
tion have memory requirements ranging from 8.83 MB
(1899 x 1626 pixels) to 220 MB (9755 x 7884 pixels).
The pathologists at HGUCR have also specified

the most relevant features that should be considered
when analyzing prostate biopsies at these magnifications.
HE stained prostate biopsies have three types of well-
differentiated structures of interest: lumen, cytoplasm,
and cells. For pathological purposes, the most important
structures are cells [1]. Their morphology, distribution
between them, and relationship with lumen and cyto-
plasm are the most relevant features that pathologists
consider to elaborate a diagnosis. Groups of cells are
especially important, and they are what we consider a
true ROI. These groups may appear either surrounding
a lumen area, or packed very closely. Typically, in both
cases some cytoplasm will appear between the cells.
Thus, ROI are complex areas, where the three types of
structures of interest appear in an unpredictable fashion.
Although lumen and cell areas can be individually seg-
mented without much effort, the segmentation of ROIs
where the structures are grouped requires advanced
techniques. It is desirable that all the three types of
structures share a common feature (or a manageable set
of them), so they all can be separated from the rest of
the image using that feature.
If an RGB image of a prostate biopsy is converted to

the YIQ colour model, and then the I channel is
extracted from the image and equalized, the result is an
image where the regions of interest are clearly high-
lighted respect to the rest of the image. It is important
to apply the equalization only to the region where the
tissue lies, since its results vary if it is applied to a
region where there is no tissue present.
Once the I channel is properly equalized, regions of

interest clearly appear darker than other regions, so a
binarization could be used to separate ROI from the
rest of the tissue. This binarization sets as foreground
all the dark regions in the image (without the non-tissue
region), and sets everything else as background. How-
ever, this basic technique alone does not produce good
results on most images. Since images tend to vary

greatly in the edges of the three types of the structures
of interest, especially in the outer border of the cells,
entropy turns out to be a great feature to determine
where the ROIs are located. It has been observed that
entropy calculations produce better results when applied
to the green channel of the RGB image, because it is the
one that features higher contrast between the structures
of interest.
Given a pixel in an image, Pi = (xi,yi), a circular neigh-

borhood of radius R around it is composed by all the
pixels Pj = (xj,yj) with an Euclidean distance to Pi is
lower than R. For each pixel Pi in the green channel, a
circular neighborhood around it is defined. Then, the
histogram of the neighborhood is calculated as well as
its entropy. Suppose that fi is the relative frequency of
pixels with intensity value i, then the entropy at Pi is

calculated as: [ log ( )]f fi i

j
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The results of entropy calculation depend on the
radius of the neighborhood considered. Obviously, the
computational footprint of entropy calculation increases
with the size of the neighborhood. The chosen radius
for entropy calculation is 27. The result of entropy cal-
culation is also equalized. It should be remarked that
entropy calculation, as well as equalization, is only
applied to the tissue in the image, and therefore the
background does not affect these calculations.
The entropy image may be binarized in order to sepa-

rate regions of high entropy from the rest of the image.
Since big lumen areas present low entropy, connected
component analysis is performed to fill in the holes that
are smaller than a predetermined size. Then, it is com-
bined with the binarized I channel using the logic operator
AND. Finally, morphologic operators are used to remove
noise and smooth the results. These morphologic opera-
tions involve a first dilation with a circular kernel with
radius 3, followed by an erosion (circular kernel, radius 5)
and a final dilation (circular kernel, radius 2). Figure 1
illustrates the full segmentation process.

Results and discussion
Some selected fragments that exemplify the algorithm
are shown in Figure 2. Although the images used to test
the algorithm were large, computational times were not
deemed excessive. The algorithm takes from 9 seconds
to 5 minutes for 9MB (1899x1626 pixels) and 220MB
(9755x7884 pixels) images respectively. The test
machine was equipped with an Intel Pentium 4 640 (3.2
GHz) and 2GB RAM (DDR2-533MHz).
A quantitative validation based on ROC analysis was

carried out with our set of 100 different tissue samples
of WSI. The samples were both benign and malign

Bueno et al. Diagnostic Pathology 2013, 8(Suppl 1):S24
http://www.diagnosticpathology.org/content/8/S1/S24

Page 2 of 5



samples of prostate biopsy. The results of the algorithm
were compared to the manual selection of ROIs done by
pathologists from the HGUCR. Thus, the rates of true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN) detections were calculated. On average,
15% of detections were FN, 2% were FP, 85% were TP,
and 98% were TN. The type I error, that is, the FP for the
100 images, occurs in those samples stained with weak HE
dye. The final results show an average sensitivity of 83%
with specificity above 99%.

Conclusions
In this paper, an approach to ROI segmentation in whole
slide images of prostate biopsies has been described. The
method proposed is based on texture and colour based
analysis.
The novelty of the technique lies in the ability to

detect complete ROIs, where a ROI is composed by the
conjunction of three different structures, that is,
lumen, cytoplasm, and cells with a high density of cells
and the architectural distribution between lumen and

cells. The method is capable of dealing with full biop-
sies digitized at different magnification. The proposed
algorithm is also original because it works on large
images acquired with low magnification, thus being dif-
ferent from other algorithms that require higher mag-
nification and have been tested only on small samples.
In this way, the method tries to mimic the manual pro-
cedure of expert clinicians. Moreover, the method is
suitable for parallelization and may be applied to differ-
ent tissue samples.
The proposed system is also useful because it can be

used for different purposes. It could be integrated into a
slide visualization environment to highlight the ROIs
for the pathologists, either for slide analysis or even
with teaching purposes. The system could also be used
as a previous step in classification applications, since it
could reduce the amount of information to be pro-
cessed, and probably speed up the whole classification
process.
Segmentation accuracy is high for HE stained samples.

Furthermore, the algorithm is also reasonably fast.

Figure 1 Flowchart of the segmentation process.
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We are currently working to improve the robustness
and speed of the algorithm, making it less sensitive to
disturbing factors such as different illumination condi-
tions, tissue thickness, and stain amount, as well as

parallelizing some parts of the pipeline in order to speed
it up. We are also working in developing a set of fea-
tures of interest that should be segmented and analyzed
in order to provide further information to the doctors.

Figure 2 Examples of segmented region of interests. Results of the segmentation algorithm applied to prostate biopsy samples digitalized at 10x.

Bueno et al. Diagnostic Pathology 2013, 8(Suppl 1):S24
http://www.diagnosticpathology.org/content/8/S1/S24

Page 4 of 5



Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors from VISILAB have developed and tested the algorithm. MG-R
from HGUCR has provided the tissue samples and qualitatively validated the
results. All authors contributed equally in writing the manuscript.

Acknowledgements
We would like to thank the Pathology services of the Hospital General
Universitario de Ciudad Real. This work was carried out with the support of
the research project ISCIII DPI2008-06071 of the Spanish Research Ministry.

Authors’ details
1VISILAB, E.T.S.Ingenieros Industriales, Universidad de Castilla-La Mancha,
Spain. 2Dpto. Anatomía Patológica, Hospital General Universitario de Ciudad
Real, Spain.

Published: 30 September 2013

References
1. Bueno G, González R, Déniz o, García-Rojo M, González-García J, Fernández-

Carrobles MM, Vállez N, Salido J: A parallel solution for high resolution
histological image análisis. Computer Methods and Programs in Biomedicine
2012.

2. Belkacem-Boussaid K, Samsi S, Lozanski G, Gurcan MN: Automatic
detection of follicular regions in H&E images using iterative shape index.
Computerized Medical Imaging and Graphics 2011, 35(7-8):592-602.

3. Peng Y, Jiang Y, Eisengart L, Healy M, Straus FH, Yang X: Computer-aided
identification of prostatic adenocarcinoma: segmentation of glandular
structures. Journal of Pathology Informatics 2011, 2(33):1-10, doi: 10.4103/
2153-3539.83193.

4. Xu J, Madabhushi A, Janowczyk A, Chandran S: A weighted mean shift,
normalized cuts initialized color gradient based geodesic active contour
model: Applications to histopathology image segmentation. Proceedings
of SPIE 2010, 7623.

5. Vidal J, Bueno G, Galeotti J, García-Rojo M, Relea F, Déniz O: A fully
automated approach to prostate biopsy segmentation based on level-
set and mean filtering. Journal of Pathology Informatics 2011, 2(5):1-11, doi:
10.4103/2153-3539.92032.

6. Sertel O, Lozanski G, Shana’ah A, Gurcan MN: Computer-aided detection of
centroblasts for follicular lymphoma grading using adaptive likelihood-
based cell segmentation. IEEE Transactions on Biomedical Engineering 2010,
57(10):2613-2616.

7. Doyle S, Feldman M, Tomaszewski J, Madabhushi A: A boosted Bayesian
multi-resolution classifier for prostate cancer detection from digitized
needle biopsies. IEEE Transactions on Biomedical Engineering 2010, 1-14.

doi:10.1186/1746-1596-8-S1-S24
Cite this article as: Bueno et al.: An entropy-based automated approach
to prostate biopsy ROI segmentation. Diagnostic Pathology 2013
8(Suppl 1):S24.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Bueno et al. Diagnostic Pathology 2013, 8(Suppl 1):S24
http://www.diagnosticpathology.org/content/8/S1/S24

Page 5 of 5

http://www.ncbi.nlm.nih.gov/pubmed/22522064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22522064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21511436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21511436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21845231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21845231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21845231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22811961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22811961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22811961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20595077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20595077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20595077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20570758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20570758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20570758?dopt=Abstract

	Background
	Material and methods
	Results and discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

