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Abstract

Background: Preventive and therapeutic options for renal failure are still limited. Gene expression profile analysis is
powerful in the identification of biological differences between end stage renal failure patients and healthy controls.

Previous studies mainly used variance/regression analysis without considering various biological, environmental factors.
The purpose of this study is to investigate the gene expression difference between end stage renal failure patients and

signatures of renal failure.

targets for future therapeutic studies.

1450799302127207

healthy controls with partial least squares (PLS) based analysis.

Methods: With gene expression data from the Gene Expression Omnibus database, we performed PLS analysis to
identify differentially expressed genes. Enrichment and network analyses were also carried out to capture the molecular

Results: We acquired 573 differentially expressed genes. Pathway and Gene Ontology items enrichment analysis
revealed over-representation of dysregulated genes in various biological processes. Network analysis identified seven
hub genes with degrees higher than 10, including CAND1, CDK2, TP53, SMURF1, YWHAE, SRSF1, and RELA. Proteins
encoded by CDK2, TP53, and RELA have been associated with the progression of renal failure in previous studies.

Conclusions: Our findings shed light on expression character of renal failure patients with the hope to offer potential
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Background

Renal failure refers to the medical condition that kidneys
fail to adequately filter waste products from blood. It is
usually not reversible and patients with end stage renal
failure have to be treated with long term dialysis or organ
transplant [1,2]. Preventive and therapeutic options for this
disease are still limited [3]. Capture the gene expression
signature of end stage renal failure patients may enhance
the development of novel therapeutic strategies.

High throughput microarray analysis is powerful to
characterize the underlying pathogenesis of various
diseases. Several studies have investigated the gene
expression difference between renal failure patients
and controls using this strategy [4-6]. These studies
generally carried out variance or regression analysis to
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detect dysregulated genes. This statistical procedure
ignored unaccounted array specific factors, including
various biological, environmental factors. Previous
studies [7,8] have suggested that partial least squares
(PLS) based expression profile analysis is efficient in
dealing with large amount of genes and fairly small
samples. Compared with variance and regression analysis,
PLS based analysis is more sensitive while maintaining
reasonable high specificity, small false discovery rate and
false non-discovery rate. Previous study using PLS analysis
on other complex disease such as breast cancer has
proved its feasibility [9]. Therefore, capturing the gene
expression signature in renal failure patients by using PLS
based analysis may provide new understanding of the
pathogenesis and offer potential therapeutic targets.

In the current study, to investigate the gene expression
difference between end stage renal failure patients and
healthy controls, we performed PLS-based analysis by
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using gene expression data from the gene expression
omnibus (GEO) database. Pathways or Gene Ontology
items significantly over-represented with dysregulated
genes were also acquired by using enrichment analysis.
In addition, we constructed a protein-protein interaction
(PPI) network with the proteins encoded by dysregulated
genes to identify hub genes that may be related with
disease progression.

Methods

Microarray data

The whole data set of gene expression profile GSE37171
from the GEO database was downloaded. This series
represents transcription profile of 63 end-stage renal
failure patients and 20 healthy controls. All samples
were taken from peripheral blood. The dataset was based
on the GPL570 platform ([HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array). This study is
approved by the institutional review board of the affiliated
hospital of Xuzhou medical college (NO. 131081).

Identification of differentially expressed genes
Normalization of raw intensity values was performed by
using Robust Multi-array Analysis (RMA) [10]. The
resulting log2-transformed expression value of each
probe was used in subsequent analysis. A multivariate
linear model was used to describe the relationship between
gene expression values and the disease status. For each
sample, the model is expressed as:

I
y = Z aix; +b (1)
=1

where y is the binary variable of disease status, 0 coded
as control and 1 coded as renal failure; p is the total
number of genes in the array. PLS analysis was then
carried out to estimate the effects of each gene. The
main purpose of PLS regression was to build orthogonal
components (called ‘latent variables” here). It is:

COV(tk"uk—> max) (2)
Subject to||tx|]| =1 and |Ju]| =1 (3)

where ;. is the kth latent variable decomposes from all
individuals’ genes expression data X (the matrix of n x p, n
refers to the number of individuals and p refers to the
number of genes), u; is the kth latent variable decomposes
from the phenotype data Y (nx 1) [11]. The non-linear
iterative partial least squares (NIPALS) algorithm [12] was
used to calculate the PLS latent variables derived from the
expression profile on the target trait, as follows:

1) Randomly initialize ug=Y
2) w=X"uy, w=w/||w||
3) t=Xw
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4) c=Y"t, c=c/||c|

5 u=Yc

6) if u-uy < 10E-8, go to step 7), else uy = u,
repeat step 2)-5)

7) X=X-tt"X, Y=Y-tt'Y

Then go back to 2) to calculate the next latent variable.

To evaluate the importance of the expressed genes on
disease, the statistics of variable importance on the
projection (VIP) [13] was calculated as:

h
pzk:1COr2(Y, ti)w;
h 2
oy Cor* (Y, t)

VIP, = (4)

where, the Cor operator is the Pearson correlation
coefficient, and for each wy, it should be normalized by
dividing llwill, and / is the number of latent variables used
in the model.

To avoid the model over fitting, the best number of
latent variables (/1 above) was determined by the prediction
accuracy based on three folds cross validation. The VIP for
each gene was then calculated with the / latent variables to
obtain genes associated with renal failure. In addition, the
false discovered rate (FDR) procedures were used to
control the expected proportion of incorrectly rejected
null hypotheses. The permutation procedure (N =10000
times) was used to obtain the empirical distribution of
PLS-based VIP in each replicate. The FDR for each gene
was then calculated as:

FDR; = (3 "™S " Bool(vIP;; > VIP,) ) /(10000p)
(5)

where Bool represents the logical value of expression:
“True” codes as 1 and “False” codes as 0. Significant genes
were selected with a threshold of FDR < 0.01.

Enrichment analysis

Annotation of all probes was carried out by using the
simple omnibus format in text (SOFT) files. To capture
biologically relevant character of differentially expressed
genes, enrichment analysis was implemented. All genes
were firstly mapped to the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (http://www.genome.jp/
kegg/) [14] and Gene Ontology database [15]. Biological
processes significantly overrepresented with differentially
expressed genes were identified by using the hyper
geometric distribution test.

Network analysis

PPI is important for all biological processes since most
protein function through its interaction with other pro-
teins [16]. Among the proteins encoded by differentially
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expressed genes, those with more interactions with other
proteins may play more important roles in the progression
of renal failure. To visualize the interaction among these
proteins and identify key molecules, a network was
constructed by using the software Cytoscape (V 2.8.3,
http://www.cytoscape.org/) [17]. The database (http://
ftp.ncbi.nlm.nih.gov/gene/GeneRIF/) of NCBI was used
to get the interaction information of all proteins. For each
protein, the number of links (interactions) was defined
as its degree. Proteins with degrees over 10 were selected
as hub molecules in this study.

Results

According to the prediction accuracy based on cross
validation, six latent variables were used in the detection
of differentially expressed genes (Figure 1). The results
revealed that 573 genes were differentially expressed
between end-stage renal failure patients and healthy
controls, including 141 downregulated genes in patients
and 432 upregulated ones. For all genes in the array,
6084 genes were mapped to various pathways, including
203 differentially expressed genes. The pathways enriched
with differentially expressed genes are listed in Table 1.
These pathways are involved in several systems, including
nervous system, digestive system, and endocrine system.
In addition, three cancer pathways, transcriptional misre-
gulation in cancers (hsa05202), chronic myeloid leukemia
(hsa05220) and small cell lung cancer (hsa05222) were
also enriched with differentially expressed genes. A total
of 16517 genes in the array were annotated based on the
GO database, including 518 differentially expressed genes.
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Table 2 represents the five GO items enriched with
selected genes. Protein binding (GO: 0005515) was the
most significant GO item with over represented selected
genes. In consistent with the pathway analysis, a transcrip-
tion related GO item: transcription, DNA-dependent
(GO: 0006351) was also identified to be overrepresented
with dysregulated genes.

Figure 2 illustrates the interaction network of proteins
encoded by differentially expressed genes. Seven proteins,
CAND1, CDK2, TP53, SMURF1, YWHAE, SRSF1, and
RELA were identified to be hub molecules, with degrees
of 31, 29, 22, 19, 15, 12, and 10 respectively.

Discussion
Renal failure is a complex medical condition which may
result from kidney injury or chronic diseases [18,19].
Microarray is a powerful technology for investigating the
gene expression difference between end-stage renal failure
patients and healthy controls. However, it is challenging to
develop a suitable statistical model to deal with the small
sample number and fairly large amount of genes. Previous
studies on renal failure mainly used variance or regression
analysis, without considering unaccounted array specific
factors. Here we used PLS based analysis to identify
dysregulated genes in end-stage renal failure patients.
Pathway enrichment analysis revealed that overrep-
resentation of dysregulated genes in various systems.
Dysfunction of various systems may be complications of
renal failure since kidneys are essential in the maintenance
of homeostatic status. In addition, we also detected
cancer-related pathways and GO items to be enriched
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Figure 1 The distribution prediction accuracy as the number of latent variable number increases. The prediction accuracy achieves 100%
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Table 1 Pathways enriched with differentially expressed gene

KEGG id Pathway description Pathway class P-value
hsa04722 Neurotrophin signaling pathway Nervous system 2.09E-03
hsa05202 Transcriptional misregulation in cancers Cancers 5.20E-03
hsa04120 Ubiquitin mediated proteolysis Folding, sorting and degradation 5.22E-03
hsa05220 Chronic myeloid leukemia Cancers 1.05E-02
hsa05222 Small cell lung cancer Cancers 2.28E-02
hsa05010 Alzheimer's disease Neurodegenerative diseases 243E-02
hsa04970 Salivary secretion Digestive system 2.85E-02
hsa04130 SNARE interactions in vesicular transport Folding, sorting and degradation 3.08E-02
hsa04912 GnRH signaling pathway Endocrine system 3.17E-02
hsa04972 Pancreatic secretion Digestive system 3.87E-02
hsa05100 Bacterial invasion of epithelial cells Infectious diseases 4.05E-02
hsa04730 Long-term depression Nervous system 4.60E-02

with differentially expressed genes. The correlation
between renal failure and cancer related biological
processes may due to the dysfunction of cell cycle
and DNA repair process in patients. Previous studies
have demonstrated the enhanced expression of DNA
repair-related proteins and induced cell cycle arrest at
G1/S and G2/M in renal failure rats [20-22]. Overrepre-
sentation of dysregulated genes in the chronic myeloid
leukemia (hsa05220) pathway revealed the similar gene
expression of these two diseases which may explain the
causative effect of lymphocytic leukemia on renal failure
[19]. These identified biological processes revealed the
molecular signatures of renal failure.

To detect hub molecules, we constructed a network with
proteins encoded by identified differentially expressed genes
(Figure 2). Several hub molecules have been identified to
play important roles in the progression of renal failure
before. Take RELA for example, protein encoded by this
gene is NF-kappaB p65. In consistent with our results,
detection of NF-kappaB p65 based on immunohistochemi-
cal staining and ELISA suggested that NF-kappaB p65 in
rat glomeruli of multiple organ failure was significantly
higher than that of control group [23]. Attenuation of
NE-kappaB p65 activation is effective in reducing endotoxic
kidney injury [24]. Inhibition of inflammation through
NF-kB also reduced renal dysfunction caused by sepsis
in mice [25]. The involvement of NF-kappaB p65 in renal

Table 2 GO items enriched with differentially expressed
gene

#GO id GO description GO class FDR

GO:0005515  protein binding Function 2.92E-06
GO:0005730  nucleolus Component — 4.54E-05
GO:0005634  nucleus Component  6.16E-05
GO:0006351  transcription, DNA-dependent  Process 4.19E-03
GO:0002326 B cell lineage commitment Process 3.72E-02

failure may be due to its interaction with inflammatory
chemokines [26], such as CXCL16, which was increased
in active nephrotic syndrome patients and correlated with
blood lipids, urine protein and inflammation responses
[27]. Genes involved in regulation of cell cycle, TP53
and CDK2, were also identified as hub genes. Their
involvements in renal failure through regulation of G1
cell cycle arrest were reported before [28]. Moreover,
paricalcitol could prevent cisplatin-induced renal injury by
suppressing the up regulation of TP53 and CDK2 [29].
Therefore, our study confirmed that these three genes
may serve as potential targets for renal failure treatments.
For the rest four hub genes, SRSF1, CANDI, SMURFI,
and YWHAE, no previous report of their association with
renal failure has been proposed before. Protein encoded
by SRSFI is a member of the arginine/serine-rich splicing
factor protein family. Up regulation of SRSF1 could
increases the cellular pool of active p53 [30], suggesting
the implication of SRSF1 in renal failure through its regula-
tion of the p53. For SMURF]I, protein encoded by this gene
is an ubiquitin ligase that is specific for receptor-regulated
SMAD proteins. It is reported that reduction of Smad7
due to the overexpression of Smurfl in unilateral ureteral
obstruction kidneys plays an important role in the progres-
sion of tubulointerstitial fibrosis [31], which a harmful
process leading inevitably to renal function deterioration.
Consistently, our analysis detected the up regulation of
SMURF1I, suggesting it may contribute to the progression
of renal failure through its ubiquitination of SMAD?7.
Protein encoded by YWHAE belongs to the 14-3-3
family of proteins which mediate signal transduction by
binding to phosphoserine-containing proteins. Quantitative
protein expression profiling revealed that overexpression of
YWHAE prompt the proliferation of renal cancer cells [32].
CAND1 may also promote the progression of renal
cell carcinoma through its interaction with carbonic
anhydrase IX [33]. Whether the up regulation contributes
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Figure 2 Interaction network constructed by proteins encoded by differentially expressed genes. Proteins with more interactions are
shown in bigger size. Proteins in red are encoded by downregulated genes in patients while those in blue are encoded by upregulated genes
in patients.
J

to the pathogenesis of renal failure needs further
investigation.

Conclusions

In summary, with gene expression profile downloaded
from the GEO database, we carried out PLS based
analysis to identify differentially expressed genes in
end-stage renal failure patients and healthy controls. Path-
way and GO enrichment analyses were also implemented to
capture biological relevant characters. A network of proteins
encoded by differentially expressed genes was constructed
to identify key molecules. Our results facilitate the disclos-
ure of the molecular mechanism underlying renal failure
progression.
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