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Abstract

Background: Digital immunohistochemistry (IHC) is one of the most promising applications brought by new
generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual
evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to
digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with
image and statistical analysis tools.

Methods: Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in
routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence.
The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization
and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data
by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide
variation of the Ki67 IHC staining results in the control tissue.

Results: Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the
sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results
from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between
the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from
the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual
cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better
contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted.
Finally, tissue-related factors of IHC staining variance were explored in the individual tissue cores.

Conclusions: Our solution enabled to monitor staining of IHC multi-tissue controls by the means of IA, followed
by automated statistical analysis, integrated into the laboratory workflow. We found that, even in consecutive serial
tissue sections, tissue-related factors affected the IHC IA results; meanwhile, less intense blue counterstain was
associated with less amount of tissue, detected by the IA tools.
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Background
Digital immunohistochemistry (IHC) is one of the most
promising applications brought by digital pathology,
enabling new generation image analysis (IA) tools [1-3].
Robust and efficient digital IHC systems are expected to
enable high throughput, accurate, and reproducible
measurement of tissue markers, along with their spatial
distribution. Conventional IHC routine is mostly based
on qualitative and semi-quantitative visual evaluation of
the tissue tested as well as tissue controls, to monitor
the IHC staining quality. Multi-tissue controls on the
same IHC slide can further improve the staining quality
control [4]. While visual quality monitor is deemed suf-
ficient for the conventional IHC, IA-based approach
may require more sensitive monitoring in the digital
IHC [5]. Although quantitative IA has been referred as
valuable way to quantify staining intensity and assure
day-to-day consistency of control tissue reactivity [6],
we are not aware of published work on this aspect. We
have previously shown that HER2 IHC multi-tissue con-
trols, monitored by IA, reveal the staining intensity
drifts and unexpected deviations undetected by routine
slide-by-slide review by a pathologist [7]. Furthermore,
data reduction by factor analysis has been helpful in
retrieving hidden variation sources in IHC IA data [8]
and could be useful in exploring quality indicators for
digital IHC.
On the other hand, successful implementation of digi-

tal IHC depends on seamless integration of the IA and
statistical analysis tools into pathology diagnosis and
research workflow. Implementation, validation, calibra-
tion, continuous quality monitoring - all require swift
quantitative feedback from the IA results. Digital IHC
tissue control is a particular case, representing this effi-
ciency need and possible solution scenarios.
We herewith present an automated system to monitor

digital IHC multi-tissue controls, based on SQL-level
integration of laboratory information system (LIS) with
image and statistical analysis tools. The platform enables
to explore hidden IHC staining variation factors in the
serial sections of multi-tissue controls used in diagnostic
IHC routine, based on multivariate analyses and visual
representation of the IA results.

Methods
IHC multi-tissue controls were constructed from paraffin
blocks of breast cancer tissue with a broad range of Ki67
IHC positivity. Tissue microarrays (TMA) containing 10
tissue cores of 1 millimeter diameter were produced and
consecutive serial sections were cut and stored at +4°C.
Upon demand, when Ki67 IHC on breast cancer tissue
were ordered by pathologist in a diagnostic routine, the
slides with the multi-tissue control sections were used
to add a section of a diagnostic sample. A unique and

ascending barcode ID number was sent to the LIS by the
Ventana Ultra machine when the slide label was printed
at the microtome workstation, thus allowing retrieval of
the serial section sequence from the LIS for further data
management and integration with the IA results. After
the IHC slides were routinely stained (Ultraview DAB
detection kit on Ventana Ultra staining system (Ventana
Medical Systems, Tucson, Arizona, USA; counterstained
with Meyer’s hematoxylin prepared in house), they were
scanned (Aperio ScanScope XT, 20× objective magnifica-
tion), TMA multi-tissue was assigned an appropriate
Aperio TMALAB design, and IA algorithms were run on
the control TMA spot images as well as on the test tissue
whole slide images (WSI). SQL-based data integration
ensured automated analysis of the TMA and WSI IA
data by the SAS Enterprise Guide project, constructed to
manage and analyze the IA data. Factor analysis and plot
visualizations were performed to extract and monitor
slide-to-slide variation of the Ki67 IHC staining charac-
teristics, based on the sequence of serial multi-tissue
sections identified by the Ventana label barcode ID in the
LIS. Three TMA blocks were used in the study conse-
quently until exhausted, to produce serial multi-tissue
control sections (84, 31, and 69, respectively). Separate
statistical analyses were carried out for each block; results
from the third block are presented in the Results section.
The control tissue samples (TMA cores) were labeled as
represented in the Ki67 IHC spot images of the third
TMA block (Figure 1); IA-detected variance between dif-
ferent tissue cores on the same slide is expected to reflect
“intra-slide inter-tissue” variation, while IA-detected var-
iance between consecutive sections of the same tissue
core - “inter-slide intra-tissue” variance, expected to
reflect the variation of IHC staining properties overtime.
The latter, if established, would then serve as “digital
IHC control” for the test tissue on the same slide.
The IA was performed by the Aperio/Leica Colocali-

zation v.9 algorithm, tuned to extract brown and blue
colors, as well as the Genie Classifier v.1/Nuclear v.9
algorithm, calibrated to enumerate Ki67-positive and
negative tumour nuclear profiles in the breast cancer
tissue [9]. Automated data management and statistical
analysis workflow were achieved in the SAS Enterprise
Guide v.5.1. Summary and variation statistics of the IA
output variables were performed (Table 1). Factor analy-
sis was carried out using factoring method of principal
component analysis: factors were retained based on the
threshold of the smallest eigenvalue of 1.0. Orthogonal
varimax rotation of the initial factors was performed.
A level of statistical significance was not set in this
exploratory experiment. The LIS is a SQL and WEB-
based system PathIS®, developed and maintained by the
National Center of Pathology and the Baltic Information
Technologies Institute, Vilnius, Lithuania.
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Figure 1 The design of the TMA used as the IHC multi-tissue controls. The cores are labeled with their sample identifiers used in this study.
IA-detected variance between different tissue cores on the same slide is expected to reflect “intra-slide inter-tissue"variation, while IA-detected
variance between consecutive sections of the same tissue core - “inter-slide intra-tissue” variance expected to reflect the variation of IHC staining
properties overtime. The latter, if established, would then serve as “digital IHC control” to measure the test tissue “intra-slide inter-tissue” variance
on the same slide.

Table 1 Slide-to-slide IHC staining variation of the 10 multi-tissue control samples, based on IA output variables

SampleID 1 2 3 4 5 6 7 8 9 10

N 69 69 69 69 69 69 69 69 69 69

Mean

Total Nuclei 2111 1006 859 1175 458 496 928 587 3059 120

Positive Nuclei 1436 541 310 400 74 89 122 111 2436 25

Percent Positive Nuclei 68 55 36 35 19 19 14 20 79 23

Positive Density 1462 895 752 616 285 270 250 373 1810 262

Negative Nuclei 674 464 550 775 384 406 806 476 623 95

Negative Density 694 749 1320 1160 1306 1178 1615 1504 464 882

Area of Analysis 0,97 0,60 0,41 0,66 0,26 0,32 0,50 0,31 1,34 0,09

Brown Intensity 110 138 133 126 174 174 171 163 106 183

Blue Intensity 167 171 170 170 173 172 170 170 171 179

Intensity Brown/Blue Ratio 0.66 0.81 0.78 0.74 1.01 1.01 1.01 0.96 0.62 1.03
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Results
Slide-to-slide IHC staining variation of the 10 multi-tis-
sue control samples, represented by selected IA output
variables, is presented in the Table 1 and Figure 2 (A, B,
C, D and E, F, G, H plots represent data obtained by the
Genie/Nuclear and Colocalization algorithms,
respectively).
Firstly, rather significant intra-core variation can be

noted in the variables reflecting the sample size of the
spots (Total nuclei, Total stained area, Figure 2A, E):
while continuous drift of these variables is likely to reflect
tissue variability in the consecutive sections, the irregula-
rities, often parallel in majority of the spots, may reflect
tissue artefacts and/or staining variation. Indeed, inspec-
tion of the spot images with major abnormalities revealed
presence of tissue artefacts.
Secondly, the variation of Ki67-positive nuclei detected in

the consecutive sections was rather significant (Figure 2B,
C); it was relatively more notable at the low end of scale
(where main clinical interest is), also represented by higher
relative error values in the cores with less Ki67 positivity
(Table 1). To avoid potential impact of misdetection of

negative tumour nuclei on the Ki67 positivity estimation,
we calculated the “Positive Density” variable as the ratio of
Ki67-positive nuclei to the Area of Analysis to be used in
further analyses. Remarkably, the variation of the Positive
Density appeared less aberrant at the low end of scale
(Figure 2D), although this was not necessarily reflected by
the Relative Error values compared to the Ki67-positive
percent (Table 1).
Thirdly, the variation of the Brown and Blue Intensity

as well as their ratio (Figure 2F, G, H) reflected inter-
core variation dependent on the Ki67 positivity of the
tumours sampled; however, the range of Blue Intensity
inter-core variation was lower than that of the Brown
Intensity. Intra-core variation of both Brown and Blue
Intensity was rather low, while aberrant spot images
revealed mostly tissue artefacts affecting the IA results.
Finally, since the multi-controls represent tissue samples

from tumours with different Ki67 positivity, it is expected
that the IA results on individual spots would reflect this;
however, slide-to-slide variation of the same core would
reveal continuous change due to some unavoidable tissue
variation in the serial sections. Importantly, one can note

Table 1 Slide-to-slide IHC staining variation of the 10 multi-tissue control samples, based on IA output variables
(Continued)

Blue Area 0.10 0.12 0.13 0.18 0.18 0.18 0.20 0.14 0.12 0.09

Brown Area 0.36 0.22 0.07 0.09 0.05 0.05 0.05 0.04 0.61 0.02

Standard deviation

Total Nuclei 527 454 275 380 423 393 487 377 524 162

Positive Nuclei 408 235 96 112 71 79 74 73 515 28

Percent Positive Nuclei 5 5 3 3 7 7 4 5 4 8

Positive Density 178 84 66 66 85 111 65 84 334 118

Negative Nuclei 164 232 183 273 357 326 422 310 106 136

Negative Density 103 148 136 102 321 244 214 233 74 290

Area of Analysis 0,22 0,24 0,13 0,21 0,22 0,22 0,27 0,19 0,07 0,10

Brown Intensity 3.61 4.83 5.85 5.32 2.51 3.03 2.27 4.61 5.80 2.98

Blue Intensity 3.21 2.86 3.50 2.75 3.27 3.99 4.08 4.35 2.53 3.51

Intensity Brown/Blue Ratio 0.02 0.03 0.04 0.04 0.02 0.02 0.03 0.04 0.03 0.02

Blue Area 0.03 0.02 0.03 0.04 0.04 0.04 0.03 0.03 0.02 0.08

Brown Area 0.12 0.09 0.02 0.02 0.02 0.02 0.02 0.01 0.10 0.02

Relative error

Total Nuclei 0.25 0.45 0.32 0.32 0.92 0.79 0.52 0.64 0.17 1.35

Positive Nuclei 0.28 0.43 0.31 0.28 0.96 0.89 0.60 0.66 0.21 1.16

Percent Positive Nuclei 0.07 0.09 0.08 0.08 0.37 0.39 0.28 0.27 0.05 0.35

Positive Density 0.12 0.09 0.09 0.11 0.30 0.41 0.26 0.23 0.18 0.45

Negative Nuclei 0.24 0.50 0.33 0.35 0.93 0.80 0.52 0.65 0.17 1.42

Negative Density 0.15 0.20 0.10 0.09 0.25 0.21 0.13 0.15 0.16 0.33

Area of Analysis 0,22 0,39 0,31 0,31 0,84 0,69 0,53 0,61 0,06 1,14

Brown Intensity 0.03 0.04 0.04 0.04 0.01 0.02 0.01 0.03 0.05 0.02

Blue Intensity 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.01 0.02

Intensity Brown/Blue Ratio 0.04 0.04 0.05 0.05 0.02 0.02 0.03 0.05 0.05 0.02

Blue Area 0.27 0.15 0.27 0.22 0.25 0.22 0.13 0.22 0.17 0.88

Brown Area 0.33 0.39 0.31 0.25 0.41 0.38 0.32 0.35 0.16 0.65
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Figure 2 Line plots representing slide-to-slide IHC staining variation of the TMA multicontrols. The sequence of Ventana slide label ID is
plotted as Barcode on the x axis to represent consecutive serial sections of TMA blocks of the 10 multi-tissue control cores (labelled as
SampleID), based on image analysis results of: A. Total Nuclei; B. Positive Nuclei; C. Percent Positive Nuclei; D. Positive Density; E. Total Stained
Area (mm2); F. Brown Intensity; G. Blue Intensity; H. Brown/Blue Intensity ratio.

Laurinaviciene et al. Diagnostic Pathology 2014, 9(Suppl 1):S10
http://www.diagnosticpathology.org/content/9/S1/S10

Page 5 of 13



the pattern that in some slides this variation appears paral-
lel in most spots, while on other occasions it appears unre-
lated (Figure 1).
To further investigate potential sources of this varia-

tion, we have aggregated the IA results from the 10 cores
as appropriate to represent them as one sample. Since
the tissue-related variation in all of the 10 cores is
expected to be random (except possible variation of the
tissue section thickness and the slide scanning regime),
aggregation of the data would represent a “super-sample”

were tissue-related impact on the IA variance would be
reduced. Therefore, variables like Median Blue Intensity,
Total Stained area, Total Nuclei, would summarize paral-
lel but disregard random variation of the individual core
IA data. Factor analysis of the aggregated variables
(Figure 3) revealed that the major source of variation
(Factor 1) was characterized by positive loadings of the
variables reflecting “sample size” detected by the IA algo-
rithms: Blue Area and Brown Area by the Colocalization,
and Area of Analysis, Positive Nuclei, Negative Nuclei by

Figure 3 Factor pattern representing parallel variance of the Colocalization and Genie/Nuclear algorithm output variables in
aggregated image analysis data from the 10 TMA cores. The variable loading plots: A. Factor-1 versus Factor-2; B. Factor-1 versus Factor-3.
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the Genie/Nuclear. Remarkably, the Factor 1 also
revealed strong negative loading of Blue Intensity values
(more intense blue correlated with more tissue detected
by both algorithms). Meanwhile, the Factor 2 was repre-
sented by positive loadings of the Percent of Positive
Nuclei and negative loadings of Brown Intensity
(more intense brown correlated with higher Percent of
Positive Nuclei). The factor pattern implies possible
impact of tissue staining intensity variation on IA perfor-
mance in terms of tissue detection, however, the percen-
tage of positive nuclei is relatively independent of this
effect (by definition, Factors 1 and 2 are linearly indepen-
dent). To further demonstrate the relationships, the plots
of the Factor 1 and 2 scores in the consecutive sections
are presented in the Figure 4: while the Factor 2 scores
reveal aberrant variation, the Factor 1 scores present
notable drift with several peaks, potentially pointing to
the IHC counterstain intensity changes, although impact
of tissue-related factors cannot be ruled out. The peculiar
relationship between the variables is also illustrated by

the plot of Area of Analysis (detected by the Genie) and
Blue Intensity (Figure 5).
Since the main feature to be extracted from the IHC

tissue controls is Brown and Blue staining intensity (the
variation is expected to be parallel to that of a test sam-
ple), we further concentrated on exploring the variation
sources of the intensity variables in the individual cores,
as presented in Figure 2F, G. The data were transformed
to enable factor analysis on Brown and Blue intensity for
each spot; furthermore, MeanBrownBlue Intensity
((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-
Blue) were introduced to better contrast the absolute
intensity and the colour balance variation. Indeed, factor
analysis (Figure 6A) extracted Factor-1 characterized by
positive loadings of DiffBrownBlue Intensity and Factor-
2 characterized by positive loadings of MeanBrownBlue
Intensity of the majority of the 10 cores. Since by defini-
tion these factors are independent, Factor-1 is expected
to reflect Brown-Blue Intensity variation in opposite
directions but parallel in the majority of the spots and

Figure 4 Line plots representing slide-to-slide IHC staining variation of the Factor scores. The factor scores generated from the analysis
presented in Fig. 3 are plotted against the sequence of Ventana slide label ID (labelled as Barcode) on the x axis
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represents the colour balance per se, mostly independent
of the tissue-related variation. Factor-2 characterizes
absolute intensity variation of both colours in the same
direction, parallel in most spots, and therefore is likely
to be dependent on tissue and/or scanning variations
(section thickness, scanning regime, etc.). The pattern of
the Factor-3 (Figure 6B) is somewhat peculiar: it is char-
acterized by parallel variance of the MeanBrownBlue
and DiffBrownBlue for the Core#9 and opposite var-
iance of these variables for the Core#7. In other words,
when Core#9 becomes darker it is because of deeper
Brown, and vice versa, when Core#7 becomes darker it
is because of deeper Blue. Importantly, the Factor-3
does reveal variable loading pattern for other cores,
therefore, it is likely to express core-specific behaviour
of the colour balance (with 2 extreme examples Core#7
and Core#9), thus can be interpreted as tissue-related
variation which has been extracted as “noise” from the

Factors 1 and 2. We therefore suggest that the Factor-1
scores provide a quantitative measure of Brown and
Blue Intensity balance “purified” from the impact of tis-
sue-related variation removed into the Factors 2 and 3.
Consequently, slide-to-slide variation of the Factor
scores can be monitored as depicted on Figure 7 and 7
further explored for quality assurance of digital IHC.
Interdependencies between the Genie/Nuclear and

Colocalization variables were further investigated by fac-
tor analyses performed for each individual tissue core.
Although the factor patterns revealed some peculiarities
for individual tissue cores, some common variance pat-
terns could be generalized from the majority of the
cores. As an example, a rather representative factor pat-
tern of the Core#2 is plotted in the Figure 8A. Factor 1
was mainly represented by positive loadings of the vari-
ables expressing the epithelial cancer compartment size
(analysis area, counts of positive and negative nuclei).

Figure 5 Line plots representing slide-to-slide IHC staining variation of selected image analysis variables from aggregated TMA data.
Aggregated data (Median Blue Intensity and Area of Analysis) from image analysis of 10 TMA cores are plotted against the sequence of Ventana
slide label ID (labelled as Barcode) on the x axis.
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Factor 2 reflected variation of the Percent of Positive
Nuclei with opposite loadings of the Negative Density
and Brown Intensity (less intense brown colour). Of
note, more intense blue correlated with the Factor 1 in

the Core#2, however, the loadings of Intensity variables
were rather variable in different tissue cores. For com-
parison, similar factor pattern of the Core#9 is presented
in the Figure 8B.

Figure 6 Factor pattern representing parallel variance of the Colocalization and Genie/Nuclear algorithms in 10 individual TMA cores.
The variable loading plots of Factor-1 versus Factor-2: A. Factor analysis results from the Core#2; B. Factor analysis results from the Core#9.
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Discussion
We aimed our experiments to explore the Ki67 IHC stain-
ing variation in our laboratory routine and to develop a
prototype integration of the IHC tissue controls, tested by
IA tools, and supported by highly automated statistical
analysis processing to provide swift feedback on the results
monitored. Although we did not pursue full automation
with the monitor results available from our LIS at this
stage, our approach enables this functionality and seamless
integration into the routine workflow.
In general, we found that Ki67 IHC staining in our

laboratory was rather stable overtime in terms of brown
and blue staining intensity indicators, measured by Colo-
calization IA. Also, we could not demonstrate visually
obvious variation of the staining intensity of the tissue
controls overtime - unlike in our previous experiment
with HER2 IHC where we found some notable aberrant
colour variation, yet, escaping routine quality checks [7].
Nevertheless, our IA data revealed rather striking varia-
tion of Ki67-positive and negative nuclei counts and to

some degree - the resulting percentage of Ki67-positive
nuclei. Consecutive serial sections of 10 individual breast
cancer tissue cores were used in our study to minimize
possible impact of true tissue variation in the consecutive
sections, which would be expected to be random in 10
unrelated samples.
Both individual and aggregated TMA core data from

both Colocalization and Genie/Nuclear algorithms were
analyzed to explore the sources of IHC staining variation.
While Colocalization tool provides more direct and inde-
pendent estimates of the staining intensity and colour
balance, the Genie/Nuclear algorithm represents the
actual IA result to be utilized further. Although we could
not rule out tissue-related variation in our experiment,
our findings raise a possibility of significant impact of
blue color counterstain intensity on the performance of
both IA algorithms, but most importantly - the Genie/
Nuclear. It is likely that less intense blue counterstain
decreases the blue area detected by the Colocalization
tool, while the performance of the Genie and, potentially,

Figure 7 Line plots representing slide-to-slide IHC staining variation of the Factor scores. The factor scores generated from the analysis
presented in Fig. 3 are plotted against the sequence of Ventana slide label ID labelled as Barcode) on the x axis.
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the Nuclear algorithms is not sufficiently robust to detect
proper amount of epithelial tissue mask and cell nuclei
within the mask. Importantly, the range of blue intensity
variation in our data was relatively low compared to that

of the amount of tissue and cell numbers detected. Of
note, our data reveal an association rather than a causal
relationship between the variables; one needs to design
more targeted experiments to obtain direct evidence.

Figure 8 Factor pattern representing parallel variance of the Colocalization and Genie/Nuclear algorithms in 10 individual TMA cores.
The variable loading plots of Factor-1 versus Factor-2: A. Factor analysis results from the Core#2; B. Factor analysis results from the Core#9.
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The IA issues with hematoxylin counterstain, used rou-
tinely in IHC, have been highlighted, alternative counter-
staining and IA techniques have been proposed [10-14].
Our experiment provides new data supporting the impor-
tance of further optimization and standardization of IHC
procedures to achieve reliable processes and results with
adoption of digital IHC. Interestingly, our data shed the
light on how reproducible the Ki67 index would be in the
consecutive sections of one 1 mm diameter core, if per-
formed for research or clinical use. While variation of the
percentage of Ki67-positive nuclei (the IA result) was
satisfactory (standard deviation in all 10 cores ranged
from 3 to 8, and relative error was within the range of
0.07 to 0.39, Table 1), the variation of cell numbers
detected (the process) was higher. One may argue that
the process variability needs to be dealt with, to achieve
robust results by digital IHC techniques.
Inter-laboratory IHC staining variation is likely to be

more significant and may impact visual estimation of Ki67
index: a recent international Ki67 reproducibility study
[15] revealed unsatisfactory results of visual estimation
which was even worse when the slides were stained locally.
This implies significant inter-laboratory Ki67 IHC staining
variability which should be considered when applying IA
tools with unknown sensitivity to the staining characteris-
tics. Although we have recently reported [9] on a metho-
dology enabling accurate Ki67 index measurement in
TMA samples by IA, the issue of IA calibration to possible
inter-laboratory IHC staining variation and comparability
of the Ki67 data between pathology labs remains open.
One approach could be measuring signal-to-noise ratio of
the images to evaluate quality before IA [16], however,
adjustment of the images and/or analyses may require
another effort. Ideally, IA tools should be robust and resis-
tant to the IHC staining and scanning variations; however,
this property requires further analysis and development
efforts. As our study shows, one particular approach could
be replacing the measurement of Ki67 index by the esti-
mate of density of Ki67-positive cells in the tumour area:
these two variables closely correlate; however, the Ki67-
positive density does not rely on accurate detection of
negative nuclei. This latter aspect may be especially rele-
vant in the tumours with low Ki67 positivity.

Conclusions
Our study presents a case for digital pathology solution to
monitor staining of IHC multi-tissue controls by the
means of digital IA, followed by automated statistical ana-
lysis procedures and integrated into the laboratory routine.
We found that, even in consecutive serial tissue sections,
tissue-related factors affected the IHC IA results; mean-
while, less intense blue counterstain was associated with
less amount of tissue, detected by the IA tools.
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DiffBrownBlue: difference of Brown and Blue Intensity (Brown-Blue); IA:
image analysis; IHC: immunohistochemistry; LIS: laboratory information
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