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Abstract

FAM3C in predicting outcomes of patients with ESCC.
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Background: Family with sequence similarity 3, member C (FAM3C) has been identified as a novel regulator in
epithelial-mesenchymal transition (EMT) and metastatic progression. However, the role of FAM3C in esophageal
squamous cell carcinoma (ESCC) remains unexplored. The purpose of present study is to illustrate the role of

Methods: FAM3C expression was measured in ESCC tissues and the matched adjacent nontumorous tissues by
quantitative real-time RT-PCR and Western blot analysis. The relationship between FAM3C expression and prognosis of
ESCC patients was further evaluated by univariate and multivariate regression analyses. Univariate and multivariate
analyses of the prognostic factors were performed using Cox proportional hazards model.

Results: The FAM3C mRNA expression was remarkably upregulated in ESCC compared with their nontumor counterparts
(P < 0.001). In addition, high expression of FAM3C was significantly associated with pT stage (P = 0.014) , pN stage
(P =0.026) and TNM stage (P = 0.003). Kaplan-Meier analysis showed that the 7-year overall survival rate in the
group with high expression of FAM3C was poorer than that in low expression group (32.0 versus 70.9 %; P < 0.001).
Univariate and multivariate analyses demonstrated that FAM3C was an independent risk factor for overall survival.
Moreover, Stratified analysis revealed that FAM3C expression could differentiate the prognosis of patients in early

Conclusions: FAM3C expression was dramatically increased in ESCC and might serve as a valuable prognostic indicator

Background

Esophageal cancer (EC) is one of the most common ma-
lignancies and ranked as the sixth leading cause of cancer-
related mortality worldwide [1, 2]. Esophageal squamous
cell carcinoma (ESCC), the most prevalent histological
subtype of EC, is characterized by its remarkable geo-
graphic distribution, and predominates in Northern Iran,
South Africa, and Northern China, especially in Henan
province [3, 4]. Despite the recent advances in diagnosis
and treatment, the prognosis of ESCC patients remains
dismal and the 5-year overall survival rate is ranging from
10 to 41 % [5-7]. ESCC has been viewed as a complex
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and heterogeneous disease which is driven by a series of
genetic and epigenetic alterations. Therefore, it is impera-
tive to search for sensitive and specific biologic markers
for prevention, screening, diagnosis and development of
specific therapies.

To obtain a clear picture of genetic alterations occurring
in ESCC patients, our group performed high-throughput
transcriptome sequencing (RNA-Seq) on three matched
pairs of ESCC and the adjacent nontumorous tissues to
identify differentially expressed genes. Family with se-
quence similarity 3, member C (FAM3C), or interleukin-
like epithelial-mesenchymal transition inducer (ILEI)
brought up our attention due to its significantly upregu-
lated expression in ESCC specimens. It belongs to the
family with sequence similarity 3 (FAM3) superfamily and
encodes a secreted protein with a GG domain. There are
four members in this family, FAM3A, FAM3B, FAM3C,
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and FAM3D, each encoding a protein (224-235 amino
acids) with a hydrophobic leader sequence [8]. FAM3C
was initially identified as a candidate gene for autosomal
recessive non-syndromic hearing loss locus 17 (DFNB17)
[9]. Recent works have revealed that FAM3C was a novel
regulator of epithelial-mesenchymal transition (EMT) and
metastatic progression [10, 11]. In addition, overexpres-
sion of FAM3C was detected in pancreatic cancer and
colorectal cancer [12, 13], suggesting important roles of
FAM3C in the metastasis and progression of cancer. How-
ever, the expression pattern and clinical significance of
FAMB3C in ESCC has not been explored.

Here we measured the expression level of FAM3C in
ESCC and matched adjacent nontumorous specimens,
and further explored its clinicopathological significance
and prognostic value in ESCC.

Methods

Patients and tissue samples

One hundred seven primary ESCC tumor and 40 paired
adjacent nontumorous tissue samples were collected im-
mediately after surgery resection at Sun Yat-sen Univer-
sity Cancer Center between March 2002 and October
2008. The inclusion criteria were as follows: (a) definitive
ESCC diagnosis by pathology based on WHO criteria;
(b) complete surgical resection, defined as complete
resection of all tumor nodules with the cut surface being
free of cancer by histologic examination; (c) no neoadju-
vant or adjuvant treatment before surgery; (d) complete
clinicopathologic and follow-up data. Ethical approval
for this study was granted by the Medical Ethics Com-
mittee of Sun Yat-sen University Cancer Center. All
patients signed informed consent. Tumor differentiation
(G1, well differentiated; G2, moderately differentiated; G3,
poorly differentiated), depth of tumor invasion (pT stage)
and lymph node metastasis (pN stage) were determined
by pathologic examination. Tumor staging was deter-
mined according to the seventh edition tumor-node-
metastasis (TNM) classification of the American Joint
Committee on Cancer [14].

Quantitative real-time reverse transcription polymerase
chain reaction (qRT-PCR)

All fresh tumorous and nontumorous tissue samples were
taken from regions which macroscopically judged to be
neoplastic and normal, respectively. Both of them were
immediately stored at dry ice after resection and then fro-
zen at —80 °C. Total RNA was extracted from clinical sam-
ples using TRIzol reagent (Invitrogen), and was reverse-
transcribed using an Advantage RT-for-PCR Kit (Clontech
Laboratories) according to the manufacturer’s instruc-
tions. qRT-PCR was performed to detect mRNA levels of
the corresponding glyceraldehyde-3-phosphate dehydro-
genase (GAPDH), FAM3C, E-cadherin and vimentin using
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a SYBR Green PCR Kit (Applied Biosystems) and
LightCycler480 384-well PCR system (Roche Diagnostics).
The GAPDH was used as an internal control for FAM3C,
E-cadherin and vimentin. Primers for FAM3C are 5'-
CCTTGGCAAATGGAAAAACAGG-3’ (forward) and 5'-
CCCAAATCAGCAATGAGCCG-3' (reverse). Primers for
E-cadherin are 5'-TGAAGGTGACAGAGCCTCTGGAT-
3" (forward) and 5-TGGGTGAATTCGGGCTTGTT-3’
(reverse). Primers for vimentin are 5'-CCTTGAACGCAA
AGTGGAATC-3" (forward) and 5-GACATGCTGTTC
CTGAATCTGAG-3' (reverse). Primers for GAPDH are
5-ACTTCAACAGCGACACCCACTC-3" (forward) and
5'-TACCAGGAAATGAGCTTGACAAAG-3" (reverse).
The value of relative expression for each sample was aver-
aged and compared using the Ct method. AACt(sample) =
ACt(sample) - ACt(calibrator), ACt(sample) = Ct(sample)
of target gene - Ct(sample) of GAPDH; ACt(calibrator) =
Ct(calibrator) of target gene - Ct(calibrator) of GAPDH;
calibrator was defined as the pooled samples from 40 adja-
cent nontumorous tissues. The fold changes in mRNAs
were calculated by the equation 2744,

Western blot analysis

Frozen tissue specimens were ground under liquid
nitrogen. Total protein was extracted with lysis buffer
for one hour on ice. Equal amounts of protein were sep-
arated by 15 % SDS-PAGE and electrophoretically trans-
ferred to polyvinylidene difluoride membranes (Roche)
using a mini trans-blot apparatus (Bio-Rad Laboratories).
Membranes were blocked with TBS-0.1 % Tween 20
containing 5 % nonfat dry milk for one hour at room
temperature and incubated with rabbit polyclonal anti-
body against FAM3C (1:1,000; Proteintech) or GAPDH
(1:1,000; Abgent) at 4 °C overnight. Membranes were then
washed three times with TBS-0.1 % Tween 20 and incu-
bated with horseradish peroxidase (HRP) —conjugated
goat anti-rabbit IgG antibody (Cell Signaling Technology)
at a 1:3,000 dilution for one hour at room temperature.
Blots were developed using a Luminata Crescendo
Western HRP substrate (Millipore). GAPDH was used
as a loading control.

Statistical analysis

All statistical analyses were performed using the Statis-
tical Package for the Social Sciences (SPSS) version 16.0
(SPSS Inc, Chicago, IL). Paired two-tailed student’s ¢ test
was used to compare the expression of FAM3C in
primary ESCC tumors and their corresponding adjacent
nontumorous tissues. The correlation between FAM3C
expression and clinicopathological parameters was
assessed by chi-square test or Fisher’s exact test. Overall
survival (OS) was defined as the interval from curative
surgery to either the time of death from ESCC or last
follow up (30 June 2015). The prognostic value was
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calculated by the Kaplan-Meier analysis with log-rank
test. Univariate and multivariate survival analyses were
performed using the Cox proportional hazard model
with a forward stepwise procedure (the entry and re-
moval probabilities were 0.05 and 0.10, respectively). A
significant difference was considered statistically when
P value was < 0.05.

Results

Expression of FAM3C in ESCC

Our previous RNA-seq data showed that FAM3C was
overexpressed in all three tested ESCC tumor tissues com-
pared to corresponding nontumor tissues. The mRNA ex-
pression of FAM3C was initially tested in 40 pairs of
primary ESCC tumors and their normal counterparts by
qRT-PCR. Elevated expression of FAM3C (defined as > 2-
fold change) was detected in 28 of 40 (70.0 %) of ESCC
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tissues compared with the matched nontumorous tissues
(Fig. 1a). The average level of FAM3C expression in tumor
specimens was dramatically higher than that in nontumor
specimens (5.72 versus 1.61, P < 0.001, paired Student’s
t test; Fig. 1a). To confirm our findings, Western blot
analysis of FAM3C expression was performed in the
paired ESCC and the nontumor specimens of 12 ran-
domly selected ESCCs from the 40 cases described
above. Consistently, the upregulation of FAM3C pro-
tein was observed in 8 of 12 ESCC tissues compared
with their matched nontumor specimens (Fig. 1b).

Correlation of FAM3C mRNA expression with EMT markers
To determine the correlation between the expression of
FAM3C and EMT, expression patterns of FAM3C and
EMT-associated markers, including E-cadherin and vimentin,
were assessed by qRT-PCR in 40 ESCC specimens described
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above. Linear regression analyses showed that the expres-
sion of FAM3C was negatively correlated with E-cadherin
expression (R = —-0.557, P < 0.001), but positively correlated
with vimentin expression (R = 0.582, P < 0.001; Fig. 1c).

Correlation of FAM3C mRNA expression with
clinicopathological variables

Subsequently, we examined the correlation between
the expression of FAM3C and the clinicopathological
features of ESCC. High level expression of FAM3C was
detected in 71/107 (66.4 %) of informative ESCC
tissues. The median fold change of FAM3C (2.28) in
ESCC tumor specimens was used as a cutoff value to
divide all 107 patients into two groups: high expression
group (n = 53) and low expression group (n = 54). As
showed in Table 1, high expression of FAM3C was
significantly associated with pT stage (P = 0.014), pN
stage (P = 0.026) and TNM stage (P = 0.003). No cor-
relation was observed between FAM3C expression and
other clinicopathological index.

Table 1 Association of FAM3C expression with clinicopathological
features in ESCC

Clinical Cases FAM3C mRNA expression P value
features low level (%) high level (%)
Age (years old) 0.204
<59 49 28 (57.1 %) 21 (429 %)
>59 58 26 (44.8 %) 32 (55.2 %)
Gender 0.954
Male 79 40 (50.6 %) 39 (494 %)
Female 28 14 (50.0 %) 14 (50.0 %)
Location 0811
Upper 12 5(41.7 %) 7 (58.3 %)
Middle 60 31 (51.7 %) 29 (48.3 %)
Lower 35 18 (514 %) 17 (48.6 %)
Differentiation 0.843
Grade 1 20 9 (45.0 %) 11 (55.0 %)
Grade 2 57 29 (50.9 %) 28 (49.1 %)
Grade 3 30 16 (533 %) 14 (46.7 %)
pT stage 0.014
T1-2 25 18 (72.0 %) 7 (28.0 %)
T3-4 82 36 (43.9 %) 46 (56.1 %)
pN stage 0.026
NO 56 34 (60.7 %) 22 (39.3 %)
N1-3 51 20 (39.2 %) 31 (60.8 %)
TNM stage 0.003
-l 60 38 (63.3 %) 22 (36.7 %)
Il 47 16 (34.0 %) 31 (66.0 %)

Statistical significance (P < 0.05) is shown in bold
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FAM3C mRNA expression and patient outcomes

The association between FAM3C expression and progno-
sis of ESCC patients was investigated by Kaplan-Meier
analysis and log-rank test. As shown in Fig. 2a, ESCC
patients with high FAM3C expression had poorer OS than
those with low FAM3C expression. The 1, 3, and 7-year
OS rate in the high FAM3C expression group were 82.5,
42.9, and 32.0 %, respectively, compared with 88.7, 75.3,
and 70.9 %, respectively, in the low FAM3C expression
group (log-rank test, P < 0.001). In the univariate analysis,
the statistically significant predictors for a patients OS
were cell differentiation (P = 0.025), pT stage (P = 0.003),
pN stage (P < 0.001), and FAM3C expression (P < 0.001)
(Table 2). In the multivariate Cox analyses, cell differ-
entiation (P = 0.043), pT stage (P = 0.045), pN stage
(P < 0.001), and FAM3C expression (P = 0.022) were
shown to be the independent prognostic predictors
for OS (Table 2). Further, in a stratified survival analysis
according to the TNM stage, FAM3C expression could
differentiate the prognosis of patients with TNM stage I-1I
(P = 0.011; Fig. 2b).

Discussion

EMT plays pivotal roles during tumor progression
through endowing cells with migratory and invasive
properties, inducing stem cell properties, and preventing
apoptosis and senescence [15]. FAM3C was regarded as
a key regulator of EMT and metastatic progression in
both human and mouse models [10, 11]. In the current
study, we found that 70.0 % of ESCC patients showed
elevated FAM3C expression in their tumor tissues com-
pared with the normal counterparts. Our results also
showed that the expression of FAM3C was associated
with the expression of E-cadherin and vimentin, which
are the vital factors in the process of EMT. Further, the
genetic-clinicopathologic correlation analysis indicated
that patients with high expression of FAM3C in tumor-
ous specimens tended to have more advanced pT stage,
pN stage and a higher TNM stage. These findings sug-
gest that FAM3C may initiate EMT process, and thus
contributing to ESCC metastasis and progression.
Consistent with our results, recent investigations dem-
onstrated that overexpression of FAM3C correlated
with EMT and metastasis in breast cancer and colon
cancer [10, 13].

EMT, a switch of polarized epithelial cells to a highly
motile mesenchymal phenotype, is a developmental event
recognized as a central process during cancer progression
and metastasis [16, 17]. TGF-p has been implicated as a
“master switch” in EMT process, which regulates expres-
sion of numerous downstream transcription factors in-
volved in EMT without or with the collaboration of other
signaling effectors [18, 19]. Several works revealed that
TGE-B-induced EMT was mediated through the induction
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of FAM3C in murine epithelial cells [11, 20, 21]. Hetero-
geneous nuclear ribonucleoprotein (hnRNP E1) repressed
FAM3C translation by binding to a TGF-B-activated trans-
lation (BAT) element in the 3'UTR of FAM3C. The
activation of TGF-f induced phosphorylation at Ser43 of
hnRNP E1 by protein kinaseBp/Akt2, which resulted in its
release from the BAT element and thus reversed the
translation inhibition of FAM3C [11, 20, 21]. Recently, a
similar translational regulation pattern of FAM3C was
observed in human lung cancer cell line A549 [22].
These data indicated that FAM3C was regulated by
post-translational modification during EMT. Besides,
our initial RNA-Seq profiling data and subsequent qRT-
PCR analysis demonstrated that the expression of FAM3C
was upregulated at RNA level in ESCCs. FAM3C was
located on chromosome 7q31. Amplification of 7q is one
of the most frequent allelic imbalances in ESCC detected
by comparative genomic hybridization (CGH) [23, 24],
suggesting the existence of one or more ESCC-related
oncogenes within this region. Accordingly, it raises the
possibility that the gains in 7q may contribute to the
overexpression of FAM3C mRNA in ESCC. Based on
these findings, we speculate that the expression of
FAM3C may be regulated via multiple mechanisms

including post-transltional modification, DNA copy
number change, hypermethylation, histone deacetyla-
tion, miRNA regulation, etc. Further elucidation for the
precise mechanism underlying the regulation of FAM3C
expression in ESCC is required.

Early research demonstrated that FAM3C alone was suf-
ficient to induce EMT, tumor growth and metastasis in
murine mammary epithelium cell EpH4, independently of
TGE-p activation [10]. However, a recent research revealed
that exogenous FAM3C strictly required co-operation with
oncogenic Ras to cause TGF-B-independent EMT and
tumor progression in human hepatocytes [25]. These
results suggest that the underlying mechanisms of FAM3C
involved in EMT may vary depending on the epithelial cell
type and tissue context. Moreover, the result that endogen-
ous, secreted FAM3C-induced EMT could be partially
suppressed by a neutralizing antibody against FAM3C in
EpRas cells [10], implies that FAM3C may induce multiple
autocrine growth factors and chemokines loops to cause
TGEF-B-independent EMT. Interestingly, activation of auto-
crine PDGF/PDGE-R signaling was observed in both
FAM3C-induced murine mammary epithelial EMT and
RAS/FAM3C-induced hepatocellular EMT [10, 25]. This
raises the question of whether FAM3C acts on EMT-

Table 2 Cox proportional hazard regression analyses for overall survival

Clinical features Univariate analysis

Multivariate analysis

HR (95 % Cl) P value HR (95 % Cl) P value
Age 1.321 (0.747-2.337) 0338 - -
Gender 3(0.297-1.265) 0.186 - -
Location 2 (0.647-1.583) 0.958 - -
Differentiation 1.574 (1.014-2.443) 0.025 1.659 (1.016-2.708) 0.043
pT stage 5.922 (1.838-19.089) 0.003 3463 (1.029-11.661) 0.045
pN stage 5470 (2.864-10.447) <0.001 3.789 (1.937-7.409) <0.001
FAM3C expression 2.941 (1.606-5.389) <0.001 2.067 (1.109-3.854) 0.022

HR Hazard ratio, Cl Confidence interval
Statistical significance (P < 0.05) is shown in bold
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associated autocrine loops or the specific FAM3C re-
ceptors. Nevertheless, until now, the precise FAM3C-
dependent signal transduction pathways or receptors
involved in EMT are not completely understood.

More importantly, our data demonstrated that ele-
vated expression of FAMS3C was significantly associ-
ated with poor OS of ESCC patients. Patients with
high FAM3C expression displayed a remarkably lower
rate of 7-year OS than those with low FAM3C expres-
sion. Moreover, with the stratified survival analysis
according to the TNM stage, we found that high ex-
pression FAM3C could identify the subgroup of
patients with poor outcomes among the early clinical
stage (TNM stage I-II) cases, but not the advanced
clinical stage ( TNM stage III). Metastasis is regarded
as a multistep process characterized by dissociation of
tumor cells from adjacent normal cells, penetration
into the underlying interstitial matrix, intravasation,
survival in the circulation, extravasation at a distant
organ site and growth of metastatic cells in the distant
organ [26]. Accumulating evidence indicates that EMT
is involved in the early steps of metastasis [27, 28].
Overexpression of FAM3C may induce the incipient
ESCC cells to undergo EMT and subsequently acquire
invasive and migratory abilities, which leads to the
poor prognosis in early clinical stage. The overall sur-
vival rate of patients with advanced clinical stage
remains dismal, which is attributed to metastatic re-
lapse after resection of the primary tumor. According
to the metastasis model, only the cancer cells that
adopt various strategies can be survive and eventually
outgrow in the target organ. In addition, systemic sig-
nals, which act directly or indirectly on the micro-
environment in which metastases arise, have impacts
on latter steps in the metastatic cascade [29, 30].
Hence, the prognostic significance of FAM3C did not
retain in advanced clinical stage. Together, data from
the current study imply that combining FAM3C
mRNA expression and clinicopathological variables
may predict outcomes of patients with early patho-
logical stage more accurately. Accordingly, postopera-
tive adjuvant therapy or careful follow-up may be
recommended for this subgroup of patients to improve
the postoperative outcomes. However, further studies
are required with larger sample sizes to validate these
findings.

Conclusions

In the present study, we, for the first time, reported
that FAM3C expression was upregulated in ESCC,
which was associated with aggressive tumor behavior,
metastasis, and poor clinical outcome. Therefore,
FAM3C may be a valuable biomarker for the prediction
of ESCC prognosis.

Page 6 of 7

Abbreviations

FAM3C: Family with sequence similarity 3, member C; ILEl: Interleukin-like
epithelial-mesenchymal transition inducer; FAM3: Family with sequence
similarity 3; EC: Esophageal cancer; ESCC: Esophageal squamous cell carcinoma;
OS: Overall survival; TNM: Tumor-node-metastasis; RNA-Seq: Transcriptome
sequencing; gRT-PCR: Quantitative real-time reverse transcription polymerase
chain reaction; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase;

EMT: Epithelial-mesenchymal transition; TGF-B: Transforming growth factor
beta; hnRNP E1: Heterogeneous nuclear ribonucleoprotein E1; BAT: TGF-
{-activated translation; CGH: comparative genomic hybridization.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

YHZ and BZ carried out the gRT-PCR and Western blot analysis and drafted the
manuscript; ML, PH and JS participated in the gRT-PCR assay and data analysis;
JF and XYG designed the study and revised the manuscript. All authors read
and approved the final manuscript.

Author details

'Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in
South China, Collaborative Innovation Center for Cancer Medicine,
Guangzhou, China. “Department of Clinical Oncology, Faculty of Medicine,
The University of Hong Kong, Hong Kong, China. *Guangdong Esophageal
Cancer Institute, Guangzhou, China. “Department of Thoracic Oncology, Sun
Yat-sen University Cancer Center, Guangzhou, China. 5Depar‘[ment of
Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University,
Guangzhou, China.

Received: 14 September 2015 Accepted: 9 October 2015
Published online: 24 October 2015

References

1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality,
and prevalence across five continents: defining priorities to reduce cancer
disparities in different geographic regions of the world. J Clin Oncol.
2006;24(14):2137-50. doi:10.1200/JC0.2005.05.2308.

2. Wheeler JB, Reed CE. Epidemiology of esophageal cancer. Surg Clin North
Am. 2012,92(5):1077-87. doi:10.1016/j.5uc.2012.07.008.

3. Hongo M, Nagasaki Y, Shoji T. Epidemiology of esophageal cancer: orient to
occident. Effects of chronology, geography and ethnicity. J Gastroenterol
Hepatol. 2009,24(5):729-35. doi:10.1111/].1440-1746.2009.05824 x.

4. Stoner GD, Gupta A. Etiology and chemoprevention of esophageal
squamous cell carcinoma. Carcinogenesis. 2001;22(11):1737-46.

5. Xiao ZF, Yang ZY, Liang J, Miao YJ, Wang M, Yin WB, et al. Value of
radiotherapy after radical surgery for esophageal carcinoma: a report of 495
patients. Ann Thorac Surg. 2003;75(2):331-6.

6. Shimizu K, Hihara J, Yoshida K, Toge T. Clinical evaluation of low-dose cisplatin
and 5-fluorouracil as adjuvant chemoradiotherapy for advanced squamous cell
carcinoma of the esophagus. Hiroshima J Med Sci. 2005;54(3):67-71.

7. Hagymasi K, Tulassay Z. Risk factors for esophageal cancer, and possible
genetic background. Orv Hetil. 2009;150(9):407-13.
doi:10.1556/0H.2009.28558.

8. ZhuY, Xu G, Patel A, McLaughlin MM, Silverman C, Knecht K, et al. Cloning,
expression, and initial characterization of a novel cytokine-like gene family.
Genomics. 2002;80(2):144-50.

9. Greinwald Jr JH, Wayne S, Chen AH, Scott DA, Zbar RI, Kraft ML, et al.
Localization of a novel gene for nonsyndromic hearing loss (DFNB17) to
chromosome region 7g31. Am J Med Genet. 1998,78(2):107-13.

10.  Waerner T, Alacakaptan M, Tamir |, Oberauer R, Gal A, Brabletz T, et al. ILEl: a
cytokine essential for EMT, tumor formation, and late events in metastasis in
epithelial cells. Cancer Cell. 2006;10(3):227-39. doi:10.1016/j.ccr.2006.07.020.

11. Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL, Howe PH. TGF-beta-
mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective
translational induction of Dab2 and ILEI. Nat Cell Biol. 2010;12(3):286-93.
doi:10.1038/ncb2029.

12. Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, et al.
Biomarker discovery from pancreatic cancer secretome using a differential
proteomic approach. Mol Cell Proteomics. 2006;5(1):157-71.
doi:10.1074/mcp.M500178-MCP200.


http://dx.doi.org/10.1200/JCO.2005.05.2308
http://dx.doi.org/10.1016/j.suc.2012.07.008
http://dx.doi.org/10.1111/j.1440-1746.2009.05824.x
http://dx.doi.org/10.1556/OH.2009.28558
http://dx.doi.org/10.1016/j.ccr.2006.07.020
http://dx.doi.org/10.1038/ncb2029
http://dx.doi.org/10.1074/mcp.M500178-MCP200

Zhu et al. Diagnostic Pathology (2015) 10:192

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Gao ZH, Lu C, Wang ZN, Song YX, Zhu JL, Gao P, et al. ILEI: a novel marker
for epithelial-mesenchymal transition and poor prognosis in colorectal
cancer. Histopathology. 2014;65(4):527-38. doi:10.1111/his.12435.

Rice TW, Rusch VW, Ishwaran H, Blackstone EH, Worldwide Esophageal
Cancer C. Cancer of the esophagus and esophagogastric junction: data-
driven staging for the seventh edition of the American Joint Committee
on Cancer/International Union Against Cancer Cancer Staging Manuals.
Cancer. 2010;116(16):3763-73. doi:10.1002/cncr.25146.

Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal
transitions in development and disease. Cell. 2009;139(5):871-90.
doi:10.1016/j.cell.2009.11.007.

Grunert S, Jechlinger M, Beug H. Diverse cellular and molecular mechanisms
contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol.
2003;4(8):657-65. doi:10.1038/nrm1175.

Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al.
Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma
progression. J Cell Physiol. 2007;213(2):374-83. doi:10.1002/jcp.21223.
Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-
mesenchymal transition in cancer progression. Curr Opin Oncol.
2013;25(1):76-84. doi:10.1097/CCO.0b013e32835b6371.

Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications
for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol.
2007;293(3):L525-34. doi:10.1152/ajplung.00163.2007.

Hussey GS, Chaudhury A, Dawson AE, Lindner DJ, Knudsen CR, Wilce MC,
et al. Identification of an mRNP complex regulating tumorigenesis at the
translational elongation step. Mol Cell. 2011;41(4):419-31.
doi:10.1016/j.molcel.2011.02.003.

Hussey GS, Link LA, Brown AS, Howley BV, Chaudhury A, Howe PH.
Establishment of a TGFbeta-induced post-transcriptional EMT gene
signature. PLoS One. 2012;7(12):52624. doi:10.1371/journal.pone.0052624.
Song Q, Sheng W, Zhang X, Jiao S, Li F. ILEI drives epithelial to
mesenchymal transition and metastatic progression in the lung cancer cell
line A549. Tumour Biol. 2014;35(2):1377-82. doi:10.1007/513277-013-1188-y.
Du Plessis L, Dietzsch E, Van Gele M, Van Roy N, Van Helden P, Parker MI,
et al. Mapping of novel regions of DNA gain and loss by comparative
genomic hybridization in esophageal carcinoma in the Black and Colored
populations of South Africa. Cancer Res. 1999;59(8):1877-83.

Kwong D, Lam A, Guan X, Law S, Tai A, Wong J, et al. Chromosomal
aberrations in esophageal squamous cell carcinoma among Chinese: gain
of 12p predicts poor prognosis after surgery. Hum Pathol.
2004;35(3):309-16.

Lahsnig C, Mikula M, Petz M, Zulehner G, Schneller D, van Zijl F, et al. ILEI
requires oncogenic Ras for the epithelial to mesenchymal transition of
hepatocytes and liver carcinoma progression. Oncogene. 2009;28(5):638-50.
doi:10.1038/0nc.2008.418.

Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of
cancer cells in metastatic sites. Nat Rev Cancer. 2002;2(8):563-72.
doi:10.1038/nrc865.

Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al.
Twist, a master regulator of morphogenesis, plays an essential role in tumor
metastasis. Cell. 2004;117(7):927-39. doi:10.1016/j.cell.2004.06.006.

Leptin M, Grunewald B. Cell shape changes during gastrulation in
Drosophila. Development. 1990;110(1):73-84.

Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat
Rev Genet. 2007;8(5):341-52. doi:10.1038/nrg2101.

Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and

Page 7 of 7

evolving paradigms. Cell. 2011;147(2):275-92. doi:10.1016/j.cell.2011.09.024. (

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J



http://dx.doi.org/10.1111/his.12435
http://dx.doi.org/10.1002/cncr.25146
http://dx.doi.org/10.1016/j.cell.2009.11.007
http://dx.doi.org/10.1038/nrm1175
http://dx.doi.org/10.1002/jcp.21223
http://dx.doi.org/10.1097/CCO.0b013e32835b6371
http://dx.doi.org/10.1152/ajplung.00163.2007
http://dx.doi.org/10.1016/j.molcel.2011.02.003
http://dx.doi.org/10.1371/journal.pone.0052624
http://dx.doi.org/10.1007/s13277-013-1188-y
http://dx.doi.org/10.1038/onc.2008.418
http://dx.doi.org/10.1038/nrc865
http://dx.doi.org/10.1016/j.cell.2004.06.006
http://dx.doi.org/10.1038/nrg2101
http://dx.doi.org/10.1016/j.cell.2011.09.024

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients and tissue samples
	Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR)
	Western blot analysis
	Statistical analysis

	Results
	Expression of FAM3C in ESCC
	Correlation of FAM3C mRNA expression with EMT markers
	Correlation of FAM3C mRNA expression with clinicopathological variables
	FAM3C mRNA expression and patient outcomes

	Discussion
	Conclusions
	Abbreviations
	Competing interests
	Authors′ contributions
	Author details
	References



