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Abstract
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Background: Plasma cell myeloma (PCM) is a neoplasm of terminally differentiated B lymphocytes with molecular
heterogeneity. Although therapy-related myeloid neoplasms are common in plasma cell myeloma patients after
chemotherapy, transdifferentiation of plasma cell myeloma into myeloid neoplasms has not been reported in
literature. Here we report a very rare case of myeloid neoplasm transformed from plasma cell myeloma.

Case presentation: A 60-year-old man with a history of plasma cell myeloma with IGH-MAF gene rearrangement and
RAS/RAF mutations developed multiple soft tissue lesions one year following melphalan-based chemotherapy and
autologous stem cell transplant. Morphological and immunohistochemical characterization of the extramedullary
disease demonstrated that the tumor cells were derived from the monocyte-macrophage lineage. Next generation
sequencing (NGS) studies detected similar clonal aberrations in the diagnostic plasma cell population and post-therapy
neoplastic cells, including IGH-MAF rearrangement, multiple genetic mutations in RAS signaling pathway proteins, and
loss of tumor suppressor genes. Molecular genetic analysis also revealed unique genomic alterations in the
transformed tumor cells, including gain of NF1 and loss of TRAF3.

Conclusion: To our knowledge, this is the first case of myeloid sarcoma transdifferentiated from plasma cell neoplasm.
Our findings in this unique case suggest clonal evolution of plasma cell myeloma to myeloma neoplasm and the
potential roles of abnormal RAS/RAF signaling pathway in lineage switch or transdifferentiation.
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Background

Plasma cell myeloma (PCM) is a neoplasm of terminally
differentiated B lymphocytes and most often involves the
bone marrow. Malignant plasma cells are defined immu-
nophenotypically by diminished or increased expression
of at least two antigens not present on non-neoplastic
plasma cells. For example, malignant plasma cells show
decreased or loss of CD45 and/or CD19 expression and
may aberrantly express CD56, CD117, and/or CD20 [1].
Immunohistochemical stains performed on diagnostic
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biopsies demonstrate retained expression of non-
neoplastic plasma cell antigens (e.g. CD138 and MUM-
1) and cytoplasmic light chain restriction. PCM is
characterized by molecular heterogeneity, including
balanced translocations involving the immunoglobulin
heavy chain locus, complex karyotypes, and mutations in
the RAS signaling cascade [2—4]. For example, KRAS,
NRAS and BRAF mutations are detected in approxi-
mately 33% of newly diagnosed PCM patients [3, 4].
Disease progression in PCM can be associated with
disease at extramedullary sites, high grade plasma cell
morphology, acquisition of additional genetic mutations
or possibly reactivation of Epstein Barr virus infection
[3, 5-7]. Although plasma cells may resemble blasts and
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express aberrant myeloid antigens [5, 8], malignant
plasma cells retain expression of a subset of plasma cell
markers and demonstrate light chain restriction, allow-
ing immunohistochemical classification of the tumor as
PCM. A subset of patients with PCM develop secondary
malignancies following high dose chemotherapy.
Therapy-related myeloid neoplasms are the most com-
mon secondary malignancy in PCM [9]. We recently
described the rapid onset of therapy-related acute
leukemia in patients in complete remission for PCM. In
this series, the immunophenotype and karyotype of the
leukemic cells was distinctly different than that seen in
the original PCM [10].

Here we report a rare case of multiple soft tissue sar-
comas arising in a patient in complete remission for
high-risk PCM. Immunohistochemical stains and flow
cytometry showed that the tumor cells expressed
monocyte-macrophage (CD163, CD68 and lysozyme)
and myeloid antigens (myeloperoxidase and CD13)
without plasma cell markers. Fluorescence in situ
hybridization (FISH) and next generation sequencing
(NGS) studies demonstrated a clonal relationship
between the diagnostic PCM and transformed tumor
cells, including loss of tumor suppressor genes and mul-
tiple, clonal/subclonal mutations in the RAS pathway.
To our knowledge, this is the first reported case of
myeloid transformation in PCM.
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Case presentation

A sixty-year-old Caucasian male presented to our
institution with chest pain. A complete blood count
showed anemia (hemoglobin of 8.0 g/dL; reference
range 13-17 g/dL) and thrombocytopenia (platelet
count of 69,000/uL; reference range 150,000—450,000/
pL). Review of the peripheral blood smear revealed 12%
circulating plasma cells. Additional laboratory evalu-
ation demonstrated an elevated total serum protein of
11.3 g/dL (reference range: 6.4-8.3 g/dL) and serum
M-component (6.8 g/dL) with increased IgG (9010 mg/
dL; reference range: 700—1600 mg/dL) and free lambda
light chain (120 mg/dL; reference range 0.57-2.63 mg/
dL). The diagnostic bone marrow biopsy demonstrated
a hypercellular bone marrow for age extensively
involved by lambda light chain-restricted plasma cells
(Fig. 1). Concurrent flow cytometric analysis showed that
the neoplastic plasma cells were positive for CD38,
CD138, and CD20 (heterogeneous) and negative for
CD45, CD27, CD81, CD56, and CD19. Cytogenetic ana-
lysis of the bone marrow aspirate cells revealed a complex
karyotype: 43,XY,del(1)(p13p32),+ 3,der(3;6)(q10;p10),del
(5)(q15q33),?  t(9;15)(p24;q24),-10,add(13)(p11.2),del(14)
(q24),-20,-22,inc[3]/46,XY[17]. Myeloma FISH studies
were uninformative due to paucity of analyzable plasma
cells. Gene array studies were consistent with high-risk c-
MAF subgroup [2]. Foundation One™ NGS studies
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Fig. 1 Morphologic examination (top) and immunohistochemical stains (bottom) performed on the diagnostic bone marrow core biopsy. The
H&E stained sections of the bone marrow biopsy revealed a diffuse infiltrate of plasma cells (x 20) with nuclear pleomorphism; a subset of plasma
cells showed prominent nucleoli (x 500). The plasma cells expressed CD138, MUM-1 with lambda light chain restriction (x 200)
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revealed IGH-MAF gene rearrangement and several
genomic alterations, including BRAF G469V and G466A,
KRAS A146V, MAP3K6 Q943, CDKN2A/B loss, TRAF3
R505 and PTPRO E379K (Table 1). Magnetic-resonance
imaging (MRI) and positron-emitted topography
(PET) scans highlighted multiple focal lesions in the
cervical spine, rib cage, tibia, and fibula, but no extra-
medullary disease.

The patient received induction chemotherapy
(Velcade, = Dexamethasone,  Thalidomide-Cisplatin,
Doxorubicin, Cyclophosphamide and Etoposide; VDT-
PACE) followed by cytoreduction (Cytoxan, Etoposide,
Mesna, Cisplatin, Dexamethasone and Cytarabine;
PACMED) and bridging therapy with carfilzomib and
daratumumab. An autologous stem cell transplant was
performed 10 months after initial diagnosis. Two
months after stem cell transplant, bone marrow evalu-
ation was morphologically negative for PCM with no
minimal residual disease detected by 8-color flow cytom-
etry; however, PET-CT imaging showed multiple focal
lesions in the bilateral femoral shafts, humeri and a
1.8 x 1.2 ¢cm mass in the right perineal region (Fig. 2). A
PET-CT imaging study showed that the lesion in the
perineal region had increased in size to approximately
3.1x2.1 cm with new extramedullary lesions noted in
the left mandibular soft tissue, lungs/mediastinal lymph
nodes and liver (Fig. 2). The differential diagnosis
included multifocal myelomatous disease progression
versus infectious etiology. The patient underwent fine
needle aspiration of mediastinal lymph nodes and punch
biopsy of the gingival lesion.

The Diff-Quik™ stained sections prepared from the
mediastinal lymph node FNA showed large atypical cells
with abundant cytoplasm with immature chromatin
(Fig. 3). The H&E stained sections prepared from the
cell block demonstrated similar morphologic features
including an infiltrate of immature monocytic cells with
rare mature granulocytes (Fig. 3). Immunohistochemical
stains showed that the neoplastic cells expressed myelo-
peroxidase (MPO; subset), CD163, lysozyme, and were

Table 1 Next-generation sequencing of the diagnostic bone
marrow aspirate and left gingival lesion

Bone marrow aspirate Soft tissue
BRAFT G466A subclonal, BRAF G469A
G469 subclonal

KRAS A146V KRAS A146V

IGH IGH-MAF rearrangement
CDKN2A/B loss

MAP3K6 Q943, truncation
exon 22

TRAF3 R505
PTPRO E379K - subclonal

IGH IGH-MAF rearrangement
CDKN2A/B loss
MAP3K6 Q943, truncation exon 22

NF1 R2450
CCT68B splice site 615-2A > G TNFAIP3 W85
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Fig. 2 PET-CT image (left) showing the lesions in the proximal
right tibia, right proximal femur and perineum. PET-CT image
(right) demonstrate increased size of the previous lesions and
new lesions in the left mandibular soft tissue, liver, lungs and
mediastinum three months after first time PET-CT

negative for CD138 (Fig. 3). Additional immunohisto-
chemical studies revealed positivity for CD68 and lack of
MUM-1, PAX-5, CD56, S-100, and P53 expression (not
shown). Concurrent flow cytometric analysis revealed
atypical cell populations with distinct CD45 expression
and forward and side scatter properties comprising 80%
of total analyzed events. One population with increased
side and forward scatter comprised 40% of total events.
These cells expressed CD45 (bright), CD33, HLA-DR,
CD14 (bright), CD11b (bright) and CD36 (variable)
(Fig. 4; red), consistent with monocytic lineage. A sec-
ond population of cells with decreased forward and side
scatter showed a similar immunophenotype with variable
expression of CD33 and dimmer expression of CD45,
CD11b and CD14 (Fig. 4; blue). Both populations were
negative for CD34 and CD117. The H&E stained sec-
tions of the gingival biopsy showed similar morphologic
features, including a dermal infiltrate of large, immature
cells with irregular nuclear contours and ample cyto-
plasm (not shown). Immunohistochemical stains of the
gingival biopsy showed an immunophenotype similar to
the mediastinal lymph node, including CD68, CD163,
lysozyme, MPO (subset) expression and lack of CD138,
MUM-1, PAX-5, CD34, and CD56 expression (not
shown). FISH studies performed on the mediastinal
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Fig. 3 Morphologic examination and immunohistochemical stains performed on the fine needle aspirate of the mediastinal lymph node. The
Diff-Quik™ stained slides show large monocytoid cells with ample blue-grey cytoplasm, round to irregular nuclear contours and immature
chromatin (x 500, top-left). The H&E stained sections prepared from the cell block shows a diffuse infiltrate of monocytoid cells with ample
cytoplasm and round to irregular nuclear contours (x 200 and x 400, top-right). The tumor cells were negative for CD138 and positive for
myeloperoxidase (MPO), CD163 and lysozyme (x 200)
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Fig. 4 Flow cytometric analysis of mediastinal lymph node revealed two cell populations with distinct forward and side scatter and CD45
expression intensity. One population with increased side and forward scatter comprised 40% of total events (red). This population expressed
(D33, HLA-DR, CD36 (variable), CD14 (bright) and CD11b (bright) and were negative for CD34 and CD117. A second population of cells with
decreased forward and side scatter showed a similar immunophenotype with variable expression of CD33 and dimmer CD11b and CD14 (blue).
These cells were also negative for CD34 and CD117
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lymph node and gingival biopsies revealed a
translocation between chromosomes 14 and 16 [IGH
and MAF genes; t(14;16)(q32;q23)] in approximately
76% and 73% of interphase nuclei examined (Fig. 5),
respectively. FISH probes for t(11q23) and del(17p13.1)
showed normal signal patterns. Cytogenetic studies
performed on the mediastinal lymph node were unsuc-
cessful due to no cell growth. The gingival lesion showed
a normal karyotype (46,XY[4]/45,)Y,-X[1]) with a low
mitotic index. NGS studies performed on the gingival
lesion demonstrated IGH-MAF rearrangement, BRAF
and KRAS mutations, CDKN2A/B loss, TNFAIP3 and
NF1 mutations (Table 1).

The patient received induction chemotherapy (7 +3
regimen of cytarabine and idarubicin). At follow up, the
patient developed neutropenic fever with persistent
pancytopenia despite receiving recombinant granulocytic
colony stimulating factor. He was re-admitted one week
later for possible sepsis/bacteremia. As the patient’s
health continued to deteriorate and the soft tissue
masses continued to grow, he decided to stop treatments
and medical interventions. The patient went into
palliative care approximately two months after the diag-
nosis of multifocal myeloid sarcoma and died shortly
thereafter.

Discussion

We report a case of multiple soft tissue sarcomas in a
patient in complete remission for high-risk PCM. The
neoplastic cells at the extramedullary sites were large
with immature chromatin and expressed the monocyte-
macrophage antigen CD163 [11], CD14 and CD68 as
well as myeloid antigens MPO and CD13. The tumor
cells were negative for S-100 and CD138, consistent with
absence of dendritic cell differentiation [12, 13] or
relapsed PCM, respectively. The immature nuclear
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features and expression of the myeloid antigens MPO
and CD13 was most consistent with the diagnosis of
myeloid sarcoma with monocytic differentiation. Fur-
thermore, FISH studies showed IGH-MAF translocation
in the transformed cells and PCR identified an IGH gene
rearrangement. NGS- based assays revealed similar gen-
omic alterations suggesting a clonal relationship between
the original PCM and secondary myeloid sarcoma.

Hematopoiesis, once viewed as a unidirectional
maturation of pluripotent hematopoietic stem cells into
specific lineages (such as lymphoid and myeloid), shows
considerable plasticity in both normal and malignant
hematopoietic cells. Lineage switching has been
described in histiocytic sarcoma (HS), Langerhans cell
sarcoma or dendritic cell tumor that occur secondary
to or synchronous with mediastinal germ cell tumors
[14], lymphoid [12, 13, 15-22], and myeloid malignan-
cies [23, 24]. Histiocytic sarcoma cells are derived from
bone marrow monocyte precursors [25], expresses
monocyte-macrophage antigens (CD163, CD68, and
lysozyme) and lack expression of myeloid antigens such
as CD33, CD13 and MPO [11, 25, 26]. The identifica-
tion of clonal associations between HS and antecedent
malignancies suggests that HS or myeloid sarcoma can
differentiate from other cell lineages or develop from a
common progenitor cell [12-20, 23, 27].

Several studies indicate that commitment to specific
lineage and lineage conversion depends on the activity
of lineage-specific transcription factors [28-30]. For
example, PAX-5 is required for B cell differentiation and
commitment to B cell lineage [31-33]. B cells that lack
PAX-5 expression can differentiate into macrophages,
dendritic cells, osteoclasts, granulocytes and natural
killer cells [32]. Similarly, the activity of the transcription
factors PU.1 and CCAAT/enhancer binding protein
alpha (C/EBPa) are important for myeloid progenitor

Fig. 5 Fluorescence in-situ hybridization studies demonstrating t(14;16)(q32,g23) in both mediastinal lymph node (a) and gingival biopsy (b). The
abnormal signaling patterns are 2R1G1F (a) and 2R1G1F (b) by dual color, dual fusion probes
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cells to commit to the granulocyte-monocyte lineage
[34]. Xie et al. showed overexpression of C/EBP« and C/
EBPB converted mature murine B cells into macro-
phages by suppressing PAX-5 expression [29]. Further-
more, studies using C/EBPa transgenic mice suggest
that B cells are directly converted to other lineages
through a biphenotypic intermediate cells rather than a
two-step process of dedifferentiation and redifferentia-
tion [34]. In support of a mechanism involving direct
transdifferentiation, Feldman et al. showed loss of PAX-5
expression and up regulation of PU.1 and CEBPf in
eight cases of histiocytic-dendritic cell sarcomas derived
from antecedent follicular lymphoma [12]. Since we do
not know the expression pattern of PU.1, C/EBPa or C/
EBPp in these soft tissue tumors, their role in lineage
transformation is unclear. However, PAX-5 was not
expressed in the original PCM, therefore down regula-
tion of PAX-5 cannot explain the development of
monocytic-macrophage lineage. MUM-1, a transcription
factor required for plasma cell differentiation [35], was
expressed in the original plasma cell tumor but was not
detected in the myeloid sarcomas (Figs. 1 and 3).
Whether down-regulation of MUM-1 contributes to
monocyte-macrophage transformation in plasma cell
myeloma is unknown.

Limited data exist regarding the molecular genetics of
transformed myeloid sarcoma; however several reports
evaluating secondary HS suggest molecular complexity
and heterogeneity. Similar to our case showing loss of
CDKNZ2A/B, loss of CDKN2A has been reported in HS
subsequent to B-lymphoblastic leukemia [15, 36]. BRAF
V600E mutation has been reported in de novo HS [37]
and HS following splenic marginal zone lymphoma [13]
and hairy cell leukemia [38]. NGS analysis of the mye-
loid sarcoma in this case showed a clonal, non V600E
activating mutation in BRAF. The BRAF mutation
(G469A) is distinct from other variants identified in de
novo HS, including BRAF F595 L, BRAF (G466R), BRAF
(G464 V) and BRAF (N581S); however, as in this case,
these BRAF variants are not mutually exclusive with
activating RAS mutations [39, 40].

Like other cases of secondary HS [23], a clonal rela-
tionship between the primary PCM and secondary
tumor in current case was confirmed by FISH and
NGS analyses showing IGH-MAF gene rearrangement,
and similar genomic alterations in KRAS, BRAF and
MAK3K6. IGH-MATF translocation is present in 3—-6%
of PCM cases [41] and this molecular subtype often
shows concurrent activating mutations in RAS-RAF
and NF-kB signaling pathways [42]. In human cell
lines, c-MAF promotes monocyte-macrophage differ-
entiation through downreguation of CEBPa [43], sug-
gesting a possible role of c-MAF in PCM phenotypic
transformation.
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In addition to shared clonal abnormalities, additional
aberrancies were detected in the sarcoma tumor cells,
including deletion of a subclone of BRAF (G466A), loss
of TRAF3 R505 and new clonal mutations in NF1 and
TNFAIP3 (Table 1). TRAF3 is a critical determinant of B
cell survival and loss of function mutations in TRAF3
and TNFAIP3 are associated with B cell malignancies
and PCM [44, 45]. NF1 mutation, a negative regulator of
RAS signaling, has been reported in rare cases of plasma
cell myeloma [4] and approximately 4% of acute myeloid
leukemia [46], but not reported in HS.

It is uncertain whether the molecular switch from
PCM to a myeloid lineage tumor involves direct trans-
differentiation via transcription factor dysregulation as
suggested for B cell lymphomas, or whether the myeloid
lineage tumors arose from a distinct, neoplastic clone
that expanded following chemotherapy [12, 15-18].
Regardless of the mechanism, NGS findings suggest a
clonal relationship with clonal evolution and a possible
role of NF1, TNFAIP3 and TRAF3 in myeloid trans-
formation of plasma cell myeloma.

Conclusion

To our knowledge, this is the first reported case of PCM
transformation to a secondary tumor with monocyte-
macrophage lineage. As in other reports, the response to
chemotherapy and prognosis is poor with patients dying
from progressive disease [18, 19, 23, 25, 26]. This study
highlights the importance of molecular analysis to
establish a clonal relationship in metachronous or syn-
chronous tumors, as addressed by other reports [47, 48].
The findings of an additional mutation in RAS-BRAF
signaling (NF1 mutation) and NF-kB activation
(TNFAIP3) suggests multiple mechanisms contribute to
lineage transformation.

Abbreviations

FISH: Fluorescence in situ hybridization; HS: Histiocytic sarcoma;
MPO: Myeloperoxidase; MS: Myeloid sarcoma; NGS: Next generation
sequencing; PCM: Plasma cell myeloma
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