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Abstract

Background: The scoring of Ki-67 is highly relevant for the diagnosis, classification, prognosis, and treatment
in breast invasive ductal carcinoma (IDC). Traditional scoring method of Ki-67 staining followed by manual
counting, is time-consumption and inter—/intra observer variability, which may limit its clinical value. Although
more and more algorithms and individual platforms have been developed for the assessment of Ki-67 stained
images to improve its accuracy level, most of them lack of accurate registration of immunohistochemical
(IHO) images and their matched hematoxylin-eosin (HE) images, or did not accurately labelled each positive
and negative cell with Ki-67 staining based on whole tissue sections (WTS). In view of this, we introduce an
accurate image registration method and an automatic identification and counting software of Ki-67 based on
WTS by deep learning.

Methods: We marked 1017 breast IDC whole slide imaging (WSI), established a research workflow based on
the (i) identification of IDC area, (ii) registration of HE and IHC slides from the same anatomical region, and
(iii) counting of positive Ki-67 staining.

Results: The accuracy, sensitivity, and specificity levels of identifying breast IDC regions were 89.44, 85.05, and
95.23%, respectively, and the contiguous HE and Ki-67 stained slides perfectly registered. We counted and
labelled each cell of 10 Ki-67 slides as standard for testing on WTS, the accuracy by automatic calculation of
Ki-67 positive rate in attained IDC was 90.2%. In the human-machine competition of Ki-67 scoring, the
average time of 1 slide was 2.3 min with 1 GPU by using this software, and the accuracy was 99.4%, which
was over 90% of the results provided by participating doctors.
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automated Ki-67 scoring on IHC stained slides.

recognition, Ki-67 counting

Conclusions: Our study demonstrates the enormous potential of automated quantitative analysis of Ki-67
staining and HE images recognition and registration based on WTS, and the automated scoring of Ki67 can
thus successfully address issues of consistency, reproducibility and accuracy. We will provide those labelled
images as an open-free platform for researchers to assess the performance of computer algorithms for

Keywords: Convolutional neural network, Whole tissue sections, Breast invasive ductal carcinoma, Automatic

Introduction
Breast invasive ductal carcinoma (IDC) is the most com-
mon malignant tumor in women worldwide, with a
trend of younger at diagnosis [1, 2]. In 2018, there were
more than 266,000 new cases of breast cancer in women
in the United States, accounting for 30% of all malignant
tumors in women and far exceeding the second lung
cancer (13%) [3]. In both developed and developing
countries, the disease ranks as third in the mortality rate
among females [2, 3]. Ki-67 protein, as well as ER, PR,
and HER-2 protein, have been recognized as main bio-
logical indicators to guide the molecular typing, treat-
ment plan, and prognosis evaluation of breast cancer [4].
Ki-67 is a cell cycle related nucleoprotein, which has
been served as an accurate marker to infer the prolifera-
tive status of tumor cells, since it only reacts with the
proliferating cells and shows no tissue specificity [5].
Interestingly, a number of studies have reported that Ki-
67 staining can be used as a reference index for the
prognosis and personalized treatment of breast cancer
patients, it is also closely related to the clinicopathologi-
cal features and molecular typing of breast cancer
patients [5-7]. Moreover, Ki-67 scoring can be used to
distinguish luminal breast cancer subtypes (A/B) and, as
a result, it certainly helps to define the best treatment
strategy for each particular condition [8, 9]. In triple
negative breast cancer (TNBC), patients high Ki-67
scores seem to benefit more from the treatment [10].
Nevertheless, the traditional scoring method of Ki-67
staining by IHC, can be frequently time-consuming,
labor-intensive, and poorly reproducible for many pa-
thologists, and later provide limited reproducibility and
quantification of respective markers. These common
problems can seriously hinder the establishment and
management of patient treatment, especially during late
phases. Fortunately, with the emergence of whole slide
digital scanning technology, it is now feasible to combine
histopathological image information with artificial
intelligence (AI) technology. This combination meets
the standards of high definition, high speed, and high
throughput screening [11], which could lay a good foun-
dation for the development and application of digital
pathology. Using whole slide imaging (WSI) as the basis,

combined with a series of technical equipment including
(i) a image analysis system and (ii) an information man-
agement system, via deep learning of the computer, Al
can effectively simulate a pathologist’s brain for effective
thinking and further assist in broader applications in the
medical and health areas, such as disease intelligence
analysis, tumour-assisted diagnosis, gene data detection,
and disease drug development [12—15]. Generally, WSIs
are gigapixel images stored in a multi-resolution pyra-
mid structure where the highest resolution is x40.
Moreover, a model training based on convolutional
neural networks (CNN) may provide doctors with effect-
ive and accurate information, such as pathological dis-
ease typing, cancer histology-assisted diagnosis, mitotic
cell counts, epithelium-stroma classification, lymph
node metastasis assessment and others [16-21]. CNN
techniques are guided by structural and statistical infor-
mation derived from respective images. There are several
deep learning models described so far, in particular for
CNN, such as LeNet, AlexNet, and GoogleNet [22].
Hence, the question arises whether Al could be used to
solve the problem of accurate counting of Ki-67 on
immunohistochemically stained sections. Existing re-
search has revealed that the development of counting
softwares, focusing on Ki-67 staining in a variety of tu-
mors, still have many limitations, including the lack of
automated location for areas of interest, or accurate
registration of IHC images and their HE images. To at-
tempt providing stronger assessment, reliable compari-
sons, and more reproducible results, here we utilized
simulated data to compare analytical performance
among different algorithms, and we further selected an
unsupervised domain adaptation for counting, based on
few simple and easily-implemented CNN models, named
as GoogLeNet Inception V1, this model could help us
located the IDC area automatically. And then, we regis-
tered the labelled HE and Ki-67 stained sections using a
Simple Elastix toolbox, which was developed by our en-
gineer teams to handle medical image registration issues
specifically. Finally, we used an algorithm provided by
Image ] to automatically extract the structure, morph-
ology, color, and other characteristics of positive/nega-
tive cells, and train the random forest classifier that
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could identify Ki-67 positive/negative cells. In addition,
we marked 10 standard Ki-67 Counting slides for testing
on whole tissue sections, these slides were labelled by
ten pathologists, who circled each cell in the tumor re-
gion of these slides and determined whether it was posi-
tive or negative.

Materials and methods

Experimental design

Research process was divided into three stages: identifi-
cation of IDC, registration, and enumerating of Ki-67
staining (See Fig. 1 for the flow chart of Ki-67 Automatic
Counting Software in breast IDC on WSI). To enhance
the classification performance of IDC and ductal carcin-
oma in situ (DCIS), and, simultaneously, to reduce the
network training time, our method was designed with
unsupervised domain adaptation for counting, based on
GoogLeNet Inception V1.

Case selection

A total of 1074 IDC slides from 672 cases diagnosed by
the Department of Pathology of West China Hospital
(Sichuan University, China) were collected. From these,
57 unqualified sections were removed after primary
screening due to (i) quality issues with the sections, (ii)
insufficient scanning clarity, and/or (iii) poor identifica-
tion of IDC area. The remaining 1017 sections were
processed for this study at last. We randomly selected
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677 of these sections as training sets, 153 as verification
sets, and 187 as test sets. Both H&E and Ki-67 stained
slides were collated into a complete digital scanning sec-
tion WSI by digital section scanner (Hamamatsu Optics’
NanoZoomer 2.0HT), with a magnification of 40 x .

Immunohistochemistry

For immunohistochemical staining of Ki-67, 4 um thin tissue
sections were dewaxed in xylene, acetone and Tris-buffered
saline, followed by heat induced epitope retrieval in pH 6.0
in a microwave oven (750 W). Ventana was used for antigen
retrieval. Sections were subsequently stained using Ki67 anti-
body (clone mAb, ready-to-use formulation), purchasing
from Roche. All the steps were carried out according to the
instructions and stained by Bench Mark ULTRA automatic
immunohistochemical staining machine.

Image acquisition

At this stage, we have included 1017 breast IDC diag-
nosed slides marked with the IDC regions, followed by
the removal of features related to these labelled digital
slides. The classification network model was further
trained by GoogleNet Concept V1, which could be used
to automatically identify IDC regions.

Labelling
A team of 36 pathologists from West China Clinical
Medical College (Sichuan University, China) was
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Fig. 1 The flow chart of Ki-67 Automatic Counting Software in breast IDC on whole tissue sections
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organized in order to label the IDC area on the WSIL
Both workflow and number of pathologists involved
were divided into four categories: (i) WSI labelling
(28 professionals), (ii) labelling review (3 profes-
sionals), (iii) labelling quality control (2 professionals),
and (iv) training experts (3 professionals). Firstly,
three experts from the Breast Diseases Group, Chin-
ese Medical Association Pathology Branch, conducted
multiple training sessions to appropriately distinguish
the IDC regions in the WSI. Next, 28 labelling staff
members were divided into other three groups to
complete the labelling of IDC regions in all WSL
Simultaneously, a pathologist with intermediate or
above titles was assigned as the team leader for each
group, to review the labelled regions and to provide
feedback on the results to the labelling staff in a
timely manner. Meanwhile, two attending pathologists
were appointed as quality control physicians to con-
duct random checks on WSI after reviewing (random
rate of 5% or above), with an accuracy rate of more
than 95% for proper qualification. For labelling, we
used different colors to distinguish various tissue
regions.

Training

After labelling by the pathologists, software engineer
used the computer image processing algorithm to seg-
ment and extract the labelled information, classifying
and extracting the positive and negative regions accord-
ingly (128 pixel x 128 pixel patch), and then used Goo-
gleNet Incubation V1 for featured extraction and
classification training to obtain a network model. At this
stage, 677 training sets of WSI were used to fit the pa-
rameters of the model, while 153 verification sets of
WSI were used to tune the model hyperparameters dur-
ing training procedures (Table 1). A total of 2000 posi-
tive patches and 2000 negative patches were selected for
training in each WSI, whereas the redundant patches
were not included in the training set.

Testing

After training the classification model, 187 test sets’ of
WSIs were used to provide an unbiased evaluation of a
final model fit on the training dataset. We took each
patch as a unit, and then considered the IDC area pre-
marked by pathologists as a “gold standard”. Next, we
compared it with the analytical results of Al systems to

Table 1 The results of segmentation and extraction based on
1017 HE slices labelled information

Type of sets training sets  verification sets  test sets  Sum
WSI number 677 153 187 1017
Patch number 11,628,208 2,973,384 2419032 17,020,624
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retrieve performance indicators such as sensitivity, speci-
ficity, and accuracy. Labelling was strictly confidential
before testing, to meet the requirements of “a single-
blind” study.

Registration

We randomly selected 100 cases with both HE slides
and their corresponding Ki-67 stained slides, which were
created by serial sectioning technique. Next, we regis-
tered the labelled HE and Ki-67 stained sections using a
Simple Elastix toolbox, which developed by our engineer
teams, could handle medical image registration issues.
Slides were initially superimposed by this toolbox, and
then automatically modified into a rigid transformation
such as translation and rotation via the registration func-
tion of the tool, thereby achieving a good registration ef-
fect. Eventually, labelling of each HE slides was migrated
to respective Ki-67 images, and the IDC area on each
Ki-67 slice was selected accordingly.

Counting of Ki-67 stained sections on whole tissue
section

The registered Ki-67 stained sections were labelled to
identify the positive and negative tumour cells. Accord-
ing to the labelling information, we used an algorithm
provided by Image ] (an open source software for digital
pathology image analysis) to automatically extract the
structure, morphology, colour, and other characteristics
of positive/negative cells, and train the random forest
classifier that could identify Ki-67 positive/negative cells.
This procedure allowed the automatic counting of Ki-67
positive and negative cells in the IDC region and, as re-
quired, Ki-67 positive rate. At this stage, we circled ten
ROI (region of interest) on each Ki-67 slice, where each
ROI included at least 100 cells. More than 100,000 cells
in all were labelled, in which positive and negative cells
were marked, respectively, in red and blue colours. The
Ki-67 positive rate calculated from these artificially la-
belled cells is considered to be the “gold standard”.
These labelled cells were also used to tune the Ki-67
counting model at the verification sets.

Testing of the total accuracy

After the aforementioned stages, we acquired an inte-
grated WSI-based model for Ki-67 Automatic Counting
in breast invasive ductal carcinoma. Thereafter, we
tested the accuracy rate of this Ki-67 counting model. In
addition, we organized a competition test, featuring ten
clinical pathologists, to verify the modelling efficiency.

Labelling of standard Ki-67 counting

Ten HE and Ki-67 co-stained IDC sections (excluding
intraductal carcinoma tissues), originated from different
patients, were used as standard provided by the
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Department of Pathology of the Sichuan Cancer Hos-
pital. These sections were labelled by ten pathologists of
West China Hospital (Sichuan University, China). Patho-
logical staff also participated in the labelling of Ki-67
automatic analysis system in our IDC study by determin-
ing the number and positive rate of Ki-67 staining in re-
spective areas. Results were classified as standard for this
testing.

Testing and competition

The Ki-67 Artificial Intelligence Counting System de-
veloped by our institute was presented at the “2017
Pathological Image Diagnosis Human-Machine Chal-
lenge” (seventh China Pathology Annual Meeting).
Contestants competed with ten senior pathologists to
validate the modelling efficiency. Competition was
based on the independent completion of Ki-67 posi-
tive counting in IDC areas of ten breast cancer WSI
within 30 min. For this, results were required to be
accurate to 1%; the completion time of each contest-
ant was recorded by auxiliary personnel. Completion
time and accuracy of each contestant were compre-
hensively evaluated.
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Results

IDC identification testing

Before training, we segmented 1017 WSIs into (i) 677
training sets, (ii) 153 verification sets, and (iii) 187 test
sets (Table 1). We used different colors to distinguish
IDC and DCIS, and normal breast tissue regions for fur-
ther labelling on each WSI (Fig. 2). When testing this re-
search system, we created a heatmap by calculating and
comparing it with the “gold standard”, which was prop-
erly defined by the pathologists (Fig. 3a). In addition, a
“blind method” design was adopted for this test. The
final test results indicated that the sensitivity of com-
puter automatic identification of IDC region was 85.05%
(misdiagnosis rate of 14.95%), specificity was 95.23%
(misdiagnosis rate of 4.77%), accuracy was 89.44%, bal-
ance accuracy was 90.14%, and AUC value was 0.959
(Table 2, Fig. 3b).

Registration results of Ki-67 staining and corresponding
IDC region

We selected 100 cases with both HE and Ki-67 stained
slides, which were created by a serial sectioning technique
for registration. Results revealed that contiguous HE and
Ki-67 stained slides could be perfectly registered, and

normal breast tissue (blue) are shown

Fig. 2 Comparative pathological analysis of breast tissue regions. Regions related to breast IDC (red), ductal carcinoma in situ (DCIS) (green), and
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Fig. 3 Comparison of the test system and the standard. a, Black box with red fields indicates the heat map, which was obtained by GoogleNet
Inception V1. Red lasso region relates to the breast IDC region marked by the pathology team (considered it as “gold standard”). b, ROC curve of
the breast IDC identification based on WSI, the area under curve is 0.959
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considerably fewer HE and Ki-67 stained slides, with lar-
ger differences, could register the core areas (Fig. 4a-c).

Ki-67 positive rate test results

Simultaneously, we tested the Ki-67 positive rate in the
IDC area. The results revealed that the accuracy of Ki-67
positive rate in the IDC could attain 90.2% after only a
few minutes of automatic calculation, using the algo-
rithm provided by Image J. An additional movie file
shows this in more detail (see Additional file 1).

Table 2 Test Results of breast IDC identification based on
whole slide imaging

Test Indicators Test Results

Sensitivity 0.8505
Specificity 09523
Balance accuracy 0.9014
Accuracy 0.8944
Positive result likehood ratio (PRLR) 17.84
Negative result likehood ratio (LR) 0.16
Positive predictive values 0.9592
Negative predictive values 0.8286
Diagnostic index 1.8028
Youden index 0.8028
False positive rate 0.0477
False negative rate 0.1495

Manual labelling of gold standard results for Ki-67
positive cells

During the human-machine challenge, our labelling staff
manually labelled the Ki-67 positive and negative tumor
cells in the IDC area of the WSI, with an average of
more than 200,000 cells per person and over 80 h of in-
tensive work, thereby providing the most accurate Ki-67
index score to date (Fig. 5a-c, Table 3).

Competition results

The final results of this Human-Machine Competition
showed that the automatic counting system we devel-
oped had an accuracy rate of 99.4% in this challenge,
which was over 90% of the results provided by partici-
pating doctors. The time that Al spent for 10 slides was
23°19”, which was less than the average time of manual
counting 25'31s”. The Al system lagged behind the
pathologist from Hebei Medical University by 0.1 points
and won second place (see Table 4 for the competition
results of all contestants).

Discussion

Due to the continuous increase on the incidence of
breast cancer worldwide, especially at younger ages,
more focus has been dedicated to the treatment and
prognosis of this malignancy. Ki-67 is a well-established
biomarker closely related to the development, metastasis,
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Fig. 4 Ki-67 staining and corresponding registration results of IDC regions. The figure illustrates contiguous HE slides and Ki-67 stained slides that
were perfectly registered (in most cases). a, Contiguous HE slides and Ki-67 stained slides. b, Registering. ¢, Registration results of IDC region in
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and prognosis of various tumors. In fact, Ki-67 is consid-
ered one of the most important protein markers to be
evaluated in clinicopathological applications in breast
cancer [1, 12]. So far, several researches reveal that Ki-
67 automatic counting systems and individual platforms,
such as Immuno Path and Immuno Ratio softwares,
have been developed and further utilized in lung cancer,
pancreatic cancer, lymphoma, breast cancer, and other
tumors [23, 24]. Still, most of these systems could not
meet the need of automation in clinical medicine, since
the existing Ki-67 algorithms cannot automatically find
the focused tissue regions, or automatically complete regis-
tration of IHC images and their HE images. Our work em-
braces the field of image recognition and registration, and
applies a model of classification based on convolution

network, using Al for the automatic identification of IDC re-
gions and combining it with the traditional computer based
Ki-67 positive algorithms. Therefore, this combination not
only allowed the development of an effective method to ex-
tract the image ridge feature for Ki-67-stained IHC images
and their HE images accurate registration automatically in
breast IDC based on whole tissue sections, and obtained
good results, but also developed a Ki-67 automatic counting
software based on previous accurate image registration. Our
results indicate that this new technological approach is feas-
ible, efficient, and accurate for IHC images and their HE im-
ages registration and automatic scoring of Ki-67. What's
more, we provide those accurately labeled digital images of
each positive and negative cells of ki-67 staining as an free-
open public platform for researchers to assess the
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A

Fig. 5 Manual labelling of “gold standard” results for Ki-67 positive cells. a, Selected regions of breast IDC on HE slides. b, Corresponding regions
of breast IDC on Ki-67 stained slides. ¢, Tumour cells in IDC regions on Ki-67 stained slides (red for positive cells, green for negative cells)

performance of computer algorithms for automated Ki-67
scoring on IHC stained slides.

WSI-based digital pathology has revealed immense ad-
vantages over traditional pathology diagnosis mode [3].
Several domestic and foreign pathology teaching and re-
search departments have already used WSI for hardware
conditions on daily pathological diagnosis and scientific

research experiments [23—25]. The accurate and efficient
labelling of the targeted WSI area is the key to digital
pathology-related research [25]. In fact, the key first step
of this study was to appropriately label the IDC regions
in WSI images to provide computers with reliable and
accurate data information learning. Through this study,
we have explored a set of feasible programs and

Table 3 Manual labelling of “gold standard” results for Ki-67 positive cells in the human-machine challenge

number Positive nuclei count Negative nuclei count Total number of cells Ki-67 Index score (%) Standard score
1 29,961 299,428 329,389 9.10 9or 10
2 50,073 270,593 320,666 15.62 150r 16
3 31,119 73,719 104,838 29.68 29 or 30
4 20,272 109,013 129,285 15.68 150r 16
5 9854 79,026 88,880 11.09 11 or12
6 11,939 122,641 134,580 8.87 8or9

7 9332 100,608 109,940 849 8or9

8 232,515 86,582 319,097 72.87 72o0r73
9 30,003 270,266 300,266 9.99 9or 10
10 85,036 69,088 154,124 55.17 55 or 56
Sum 510,104 1,480,964 1,991,068 -

Average 51,010 148,096 199,107 25.62
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Table 4 Details for the competition results of all contestants
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No. Dr.NO.1  Dr.NO2 Dr.NO3 Dr.NO4 Dr.NO5 Dr.NO6 Dr.NO7 Dr.NO8 Dr.NO9 DrNO.10 Average Al
score score score score score score score score score score score score

1 94 84 91 99 94 96 100 99 92 80 929 100

2 96 86 91 89 94 95 99 94 96 95 935 98

3 90 98 90 85 84 69 100 65 70 88 839 97

4 98 92 92 88 69 89 99 99 74 99 899 99

5 99 91 86 92 97 90 98 97 98 93 94.1 99

6 96 93 96 92 96 99 99 97 96 97 96.1 100

7 86 93 52 97 68 88 98 100 88 78 84.8 99

8 92 98 98 78 88 88 100 78 83 98 90.1 98

9 97 100 95 96 92 96 98 95 90 90 939 99

10 100 70 70 75 65 93 99 65 90 68 79.5 100

Average  94.8 90.5 86.1 89.1 84.7 89.3 99.0 889 87.7 88.6 989

score

Total time  2827" 25'54" 28'56" 28'25" 20"33" 23'40" 18'46" 20723" 26'55" 27'42"  25'31" 239"

procedures for training labelling personnel based on
WSI images, and, moreover, we have strengthened the
role of pathologists in computer-aided diagnosis and
analysis.

At present, the most commonly used evaluation
method of registration effect is based on gray level, just
like sum square differences (SSD), Normalized Mutual
Information (NMI) and normalized cross correlation
(NCC). In this paper, we choose NCC as our evaluation
method of registration. It calculates the matching degree
between two graphs by normalized correlation measure-
ment formula. NCC evaluation algorithm can effectively
reduce the impact of light on image comparison results,
and the results of NCC evaluation algorithm are normal-
ized to between 0 and 1, which is easy to quantify and
judge the quality of registration results. The NCC value
of our registration model is 0.975, this shows that the
matching degree is very good and sufficient to meet the
actual needs. In addition, automatic registration should
produced some areas that do not match perfectly, for
these areas, we had tried to manually adjust them to
match perfectly. However, the test result found that the
difference of the positive rate of IHC sections between
manually adjusted and automatic results were very small.
Our analysis suggested that was because the registration
model had been able to make the WSIs highly matched,
and slight regional differences in registration had little
impact on the final result.

While performing slide screening and classification
model training, it was necessary to continuously
interpolate the verified experiments in order to improve
the training efficiency and accuracy of the classification
model. We found that a few non-standard pathological
sections (such as IDC areas not appropriate for

identification, and positive areas of unexpected dimen-
sions) could reduce the accuracy of the classification
model. The main reason appeared to be that the accur-
acy of the classifier was affected by differences in the in-
dividual characteristics of the image, possibly greater
than the differences in the classification characteristics.
For instance, when the number of patches extracted from
a WSI was particularly large or small, the features learned
by computer classification model may not represent the
expected classification characteristics (such as IDC’s image
characteristics) but, instead, they might be peculiar to the
individual image that was evaluated (such as color differ-
ences and/or impurities of the present image). A potential
alternative was prepared by selecting per WSI for training
(2 k positive and 2 k negative patches were selected in our
study), whereas the redundant patches were not included
in the training set. Therefore, while selecting slides, we
had to select proper types with obvious IDC area and
moderate size, which would be more conducive to retrieve
an accurate classification model. This revealed that a veri-
fication step was essential, and it required constant ex-
change of experience between the pathology team and the
computer engineer team, as well as a close cooperation
between these groups for troubleshooting purposes.
Internationally, automatic analysis with the aid of artificial
intelligence has covered a variety of diseases, ranging from “be-
nign” conditions such as diabetic retinopathy and Alzheimer’s
disease [7], to malignant tumors such as breast cancer [26-28],
lung cancer [29], liver cancer [30], skin cancer [31], osteosar-
coma [32], and lymphoma [33, 34], with an accuracy rate of
89.4-97.8%, and an AUC score of 0.85-094 [7, 27, 31]. In
addition, various Al systems related to breast cancer have pene-
trated through different levels of IDC, such as histology-assisted
and cytology-assisted diagnosis, mitotic cell count, lymph node
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metastasis assessment [9, 10, 18, 22], breast cancer drug devel-
opment and others [8], with an accuracy rate of 82.7-92.4%
and an AUC score of 097 [27, 28]. This also indicated that,
with the help of Al, pathological diagnosis and index count-
ing was safe, effective, and feasible [35]. Notably, compared
with our IDC identification system, accuracy levels followed
the advanced international standards, and this model was a
prerequisite to further match the IDC regions with corre-
sponding Ki-67 staining, and to further develop a Ki-67
automatic counting system. However, as far as we know,
there are very few such whole-slide-marked ki-67 standards
which have accurately labelled each positive and negative
cell of ki-67 staining image in public databases, and we will
publish these digital Ki-67 images that have been accurately
labelled each positive and negative cell by pathologists dur-
ing the course of this study as an open public databases for
other interested researchers.

Factors that lead to poor reproducibility of Ki-67 scoring
results may include type of biopsy, time to fixative, type of
antibody, method of reading and area of reading [36—39].
To decrease this variability and improve the evaluation of
Ki-67, many research institutions including the Inter-
national Ki-67 Working Group have conducted a series of
studies [36—38, 40]. According to the guidelines for the
analysis, reporting, and use of Ki-67 proposed by the
International Ki-67 in Breast Cancer Working Group, Ki-
67 score was defined as the percentage of invasive cancer
cells positively stained in the examined region, while stain-
ing intensity is not relevant; For type of biopsy, both core-
cut biopsies and whole section tissues are suitable, but
whole section may give higher Ki-67 scores than core bi-
opsy; For antibody clones, like MIB-1, MM-1, Ki-S5, SP6
and Ventana 30-9, most of the aforementioned studies
have been demonstrated that the most widely used and
validated antibody is the MIB-1 clone [36—38]. Although
some factors like type of biopsy, antibody clones as men-
tioned above may be correctable, others may be difficult
to standardize. The inconsistency in the selection of read-
ing area of slide is generally considered to be one of the
important reasons for the poor reproducibility of Ki-67
immunohistochemistry scoring. Due to the heterogeneity
of breast cancer, most Ki-67 positive tumour cells are
often unevenly distributed, and there are hot spots and
cold areas [37, 41]. Many published studies showed that
the Ki-67 score obtained by evaluating only the hotspot
area or marginal area is significantly higher than the aver-
age area, cold area and intermediate proliferation area,
and the Ki-67 score in the hotspot area had a greater cor-
relation with breast cancer prognosis [37, 39, 42]. The
International Ki-67 Working Group currently recommend
that at least three high power fields (HPFs) should be se-
lected to represent the spectrum of staining seen on the
initial overview of the entire section, and the invasive edge
of the tumour should be counted, and using the average
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score across the section for the present because of its
greater reproducibility [36, 37, 39]. On the other hand, the
number of cells counted is also one of the factors affecting
the reproducibility of Ki-67 scoring in breast cancer. Obvi-
ously, the Ki-67 score obtained by counting 100 tumour
cells must be different with 1000 tumour cells on the same
immunohistochemistry section. Although there is cur-
rently no uniform requirement for the total number of
cells in the Ki-67 scoring assessment, many research insti-
tutions including the International Ki-67 Working Group
have recommend that at least 1000 cells should be scored
and that 500 cells be accepted as the absolute minimum
to achieve adequate precision [36, 39]. In our present
study, Ki-67 was scored by the average method and more
than 1000 cells on each Ki-67 slice were counted whether
in manual counting or Al stage, which to achieve a har-
monized methodology, create greater between-laboratory
and between-study comparability of Ki-67 marker in
breast cancer.

Conclusion

Our current study was able to provide computer-based in
deep learning by extracting large sample size data informa-
tion, resulting in the development of automated quantita-
tive analysis of Ki-67 staining and HE images recognition
and registration on whole tissue sections in breast carcin-
oma. We also explored a set of feasible programs and pro-
cedures for labelling staff training based on WSI, which
further demonstrated that Ki-67 automatic counting system
could finish the enumeration with considerably high effi-
ciency and accuracy. In addition, we provide these digital
images of Ki-67 staining which have been accurately la-
belled by pathologists in this study as free-open source. We
strongly believe that, with the AI support, pathologists can
greatly improve the efficiency and accuracy of Ki-67 count-
ing in breast invasive ductal carcinoma, and efficiently
present a more precise and efficient clinical diagnosis. In
the near future, we expect to improve more the accuracy
and sensitivity of the software by upscaling data and/or
algorithms, and then combine it with more immunohisto-
chemical quantitative analysis to develop auxiliary soft-
ware(s), which could meet the requirements of clinical
diagnosis and further pathological applications.
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counted Ki-67 positive and negative tumor cells in respective IDC areas
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(red for positive cells, green for negative cells) and provided accurate Ki-
67 index scores.
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