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High tumor mutation burden is associated
with DNA damage repair gene mutation in
breast carcinomas
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Abstract

Background: Immunotherapy has demonstrated encouraging clinical benefits in patients with advanced breast
carcinomas and Programmed death ligand 1 (PD-L1) expression has been proposed as an immunotherapy
biomarker. Challenges with current PD-L1 testing exist and tumor mutation burden (TMB) is emerging as a
biomarker to predict clinical response to immunotherapy in melanoma and non-small cell lung cancer patients.
However, TMB has not been well characterized in breast carcinomas.

Methods: The study cohort included 62 advanced breast cancer patients (13 primary and 49 metastatic). Genetic
alterations and TMB were determined by FoundationOne CDx next generation sequencing (NGS) and the
association with clinicopathologic features was analyzed.

Results: High TMB was observed in a relatively low frequency (3/62, 4.8%). TMB levels were positively associated
tumor infiltrating lymphocytes and significantly higher TMB was observed in breast carcinomas with DNA damage
repair gene mutation(s). There was no significant association between TMB levels and other analyzed
clinicopathologic characteristics.

Conclusions: Our data indicate the importance of DNA damage repair proteins in maintaining DNA integrity and
immune reaction and breast carcinoma patients with DDR mutation may benefit from immunotherapy.
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Introduction
Breast cancer (BC) is the most common malignancy in
women [1] and biomarkers including estrogen receptor
(ER)s, progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2), are routinely per-
formed for therapeutic decision-making [2]. Although
anti-hormonal and anti-HER2 targeted therapies are
available for a large percentage of BC patients, up to

30% BC patients develop advanced disease during their
disease courses [3, 4]. The lack/loss of efficacy of tar-
geted therapies and the relatively poor prognosis of ad-
vanced BC patients have created the need to evaluate
novel treatment approaches, including immunotherapy
[5–7]. Recent studies have demonstrated pembrolizumab
and atezolizumab plus nab-paclitaxel have demonstrated
encouraging clinical benefits in patients with advanced
triple negative BC [5, 6]. Although Programmed death
ligand 1 (PD-L1) expression has been proposed as a
biomarker for immunotherapy, challenges with PD-L1
testing exist, including interassay variability among dif-
ferent PD-L1 immunohistochemistry (IHC) assays with
different reagents and platforms, lack of standardization
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among different PD-L1 IHC assays, and even interob-
server variability in interpreting PD-L1 IHCs [8–12].
Tumor mutation burden (TMB) is defined as the total

number of somatic mutations in a region of tumor gen-
ome and is associated with the immunogenicity of many
different tumors, including BC [13, 14]. TMB is emer-
ging as potential biomarker for immunotherapy deci-
sions in melanoma or non-small lung cancer patients
[15–23]; however, TMB has not been well characterized
in BCs. Whole exome sequencing is the standard
method to determine TMB, but it is time consuming
and too expensive for routine clinical practice. Recently,
commercially available cancer gene panels, such as
FoundationOne CDx, have been shown to have similar
accuracy in determining TMB and similar ability to pre-
dict outcomes to immunotherapy [13, 21, 24, 25]. In this
study, we aimed to investigate TMB in BCs using Foun-
dationOne CDx NGS and its association with different
clinicopathologic features including histologic types,
hormone receptor and HER2 status, and different gen-
etic mutations.

Methods
Patients and specimens
The study cohort included 62 advanced breast cancer
patients (13 primary and 49 metastatic) within a study
period between January 2014 and June 2018. The
specimens from these patients were sent to Foundation
Medicine (Cambridge, MA) for analyzing genetic alter-
ations and TMB by FoundationOne CDx next gener-
ation sequencing (NGS) (Foundation Medicine,
Cambridge, MA). This study was approved by the Ohio
State University institutional Research Board. Clinico-
pathologic characteristics were collected and breast
cancer biomarkers (ER, PR, and HER2) were evaluated
by breast subspecialized pathologists, with manual quan-
tification [ER: clone SP1 (Spring, Pleasanton, CA), PR:
clone PgR 636 (DAKO, Carpinteria, CA), HER2: 4B5
clone (Ventana, Tucson, AZ)].

Analyzing genetic alterations and tumor mutation burden
by FoundationOne CDx NGS
Genetic alterations were determined by FoundationOne
CDx NGS performed at Foundation Medicine and the
results were extracted from FoundationOne CDx re-
ports. TMB was also determined by FoundationOne
CDx as the number of somatic, coding base substitutions
and short insertions and deletions per megabase of
tumor genome examined [13]. TMB levels are divided
into three groups on FoundationOne CDx reports, in-
cluding low TMB (1–5 muts/mb), intermediate TMB
(6–19 muts/mb), and high TMB (≥ 20 muts/mb).

Evaluating tumor infiltrating lymphocytes (TILs)
At Ohio State University, all slides from tumor cases
had been digitally scanned (Philips Intel-liSite). Repre-
sentative digital slides from our cohort except 5 cytology
cases were reviewed with the Philips Digital Pathology
Solutions viewer and TILs were scored as a percentage
by reviewing the slides at 50x, 100x, and 200x
magnifications.

DNA damage repair gene mutation analysis
Thirty-four DNA damage repair (DDR) genes are in-
cluded in FoundationOne CDx NGS and analyzed for
genetic alterations. These genes belongs several DDR ca-
nonical pathways including nucleotide excision repair
(NER), mismatch repair (MMR), Fanconi Anemia (FA),
homologous recombination (HR), checkpoint and others
[26]. (Table 1).

Statistical analysis
All clinicopathologic variables were summarized using
percentages and descriptive statistics (mean, range, fre-
quencies). T test was used to compare the continuous
values among different groups. Statistics were performed
using SAS version 9.3 (SAS Institute Inc., Cary, North
Carolina). For all results, a P-value of < 0.05 was consid-
ered significant.

Results
The demographic features of study cohort
The average age of the patient’s studied in this cohort
was 53.8 years old (range 30–78). The majority of speci-
mens were from metastatic locations (49, 79.0%) because
FoundationOne CDx was ordered mostly in patients
with advanced stage disease. Fifty-two (83.9%) cases were
invasive ductal carcinoma (IDC), 6 (9.7%) were invasive
lobular carcinoma, 2 (3.2%) were metaplastic carcinoma,
and 2 (3.2%) were neuroendocrine carcinomas. As for
breast cancer biomarkers, 36 (58.1%) were ER positive,

Table 1 DNA damage repair genes included in FoundationOne
CDx NGS panel

Pathways NER MMR FA HR Checkpoint Others

Genes ERCC2 MLH1 BRCA2 BRCA1 ATM POLE

ERCC3 MSH2 BRIP1 MRE11A ATR MUTYH

ERCC4 MSH6 FANCA NBN CHEK1 PARP1

ERCC5 PMS1 FANCC RAD50 CHEK2 RECQL4

PMS2 PALB2 RAD51 MDC1

RAD51C RAD51B

BLM RAD51D

RAD52

RAD54L

Abbreviations: NER nucleotide excision repair, MMR mismatch repair, FA
Fanconi Anemia, HR homologous recombination
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38 (61.3%) were PR positive, 5 (8.1%) were HER2 posi-
tive, and 22 (35.5%) were triple negative. Among 62
cases, 3 (4.8%) had high TMB, 27 (43.6%) had intermedi-
ate TMB, and the remaining 32 (51.6%) had low TMB.
Due to the rarity of high TMB, cases with high and
intermediate TMB were grouped together and compared
with cases with low TMB regarding to their clinicopath-
ologic features. The group of cases with intermediate or
high TMB showed significantly increased TILs than the
group of cases with low TMB (p = 0.0018). In addition, a
moderate correlation between TMB and TILs was
identified by the Pearson correlation analysis with a
coefficient (r) of 0.80696 (n = 57, P < .0001, y =
0.9177x + 0.3697, R2 = 0.6512). (Fig. 1) There was no
significant association between TMB levels and other
analyzed clinicopathologic characteristics, including bio-
marker status, histologic types and tumor nuclear grade.
(Table 2).
The most common gene mutation identified among 62

cases was TP53 (59.7%) followed by PIK3CA (33.9%).
Interestingly, of the 6 BCs with BRCA (1/2) mutations
analyzed, 5 of them had intermediate or high TMB,
while only one case showed low TMB (p = 0.0002).
(Table 2) The association between TMB and DNA dam-
age repair pathway.
Thirty-four DDR genes are included in Foundatio-

nOne CDx NGS panel and analyzed for genetic alter-
ations. Thirteen cases showed at least one DDR gene
mutation and the remaining 49 cases did not show any
DDR gene mutation. Clinicopathologic features and
TMB were analyzed between DDR mutated and non-
DDR mutated cases. BCs harboring DDR mutation(s) av-
eraged a higher TMB compared to those without DDR
mutation (12.08 average mutations vs. 6.57; p = 0.043).
No significant difference was found in other analyzed

clinicopathologic characteristics between DDR mutated
and non-DDR mutated cases. (Table 3).

Cases with high TMB (≥ 20) harbored either MAGI2 or
PTEN genetic mutations
Three cases had high TMB, including 2 invasive ductal
carcinomas and one invasive lobular carcinoma. All
three cases showed high expression of ER but were
negative for PR and HER2. All three cases showed prom-
inent tumoral lymphocytic infiltrates (Fig. 2). Of these
three cases, two harbored MAGI2 mutations and one
harbored a PTEN mutation. The two MAGI2 mutations
were MAGI2 S220* and MAGI2 Q1193fs*35. (Table 4).

Discussion
Immunotherapy has demonstrated encouraging clinical
benefits in advanced BC patients and PD-L1 IHC testing
has been used to select eligible patients for such therapy
[5]. However, challenges with current PD-L1 testing do
exist, such as interassay variability and interobserver
variability [11, 12]. Tumors with high TMB are associ-
ated with significant clinical benefit to immunotherapy
in melanoma and non-small cell lung cancer patients
[22, 27, 28]. TMB levels are very different among differ-
ent tumors and such information is lacking in BCs [13].
In this study, we investigated TMB in 62 BCs deter-
mined by FoundationOne CDx assay and found a
relatively low percentage of BCs with a high TMB
level (3/62, 4.8%), consistent with previous study [13],
but no association of TMB levels with any of the ana-
lyzed clinicopathologic characteristics was identified,
such as age, histologic types and other biomarkers
(ER, PR and HER2).
Tumors with deficient mismatch repair (dMMR) or

microsatellite instability (MSI) have shown a high TMB

Fig. 1 Correlation between tumor mutation burden (TMB) and tumor infiltrating lymphocytes (TILs). The Pearson correlation coefficient (r) for
TMB and TILs was 0.80696 (n = 57; P < .0001). (y = 0.9177x + 0.3697, R2 = 0.6512)
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level [13, 29–31] and patients with dMMR and MSI-high
tumor have benefited from immunotherapy [32–35]. Tu-
mors with DNA polymerase epsilon (POLE) mutation also
have high TMB level [36]. While tumors with POLE mu-
tation, dMMR, or high MSI show high TMB level, the

reverse is not always true. For example, melanoma and
non-small cell lung carcinomas frequently have high TMB
but dMMR, MSI-high or POLE mutations are rare in
these tumors [37–39], indicating other mechanisms can
contribute to increased TMB [13, 32, 36, 40]. Previously,

Table 3 Tumor mutation burden between DDR-mutated BCs and non-DDR-mutated BCs

DDR mutated Non-DDR mutated Total p Value

# (average) % (range) # (average) % (range) # (average) % (range)

# 13 49 62

Age 50.7 36–70 54.6 30–78 53.8 30–78 0.2718

Specimens Biopsy 10 76.9% 37 75.5% 47 75.8%

Excision 1 7.7% 9 18.4% 10 16.1%

Cytology 2 15.4% 3 6.1% 5 8.1%

Locations primary 3 23.1% 10 20.4% 13 21.0% NS

Metastatic 10 76.9% 39 79.6% 49 79.0%

Biomarkers ER/PR+ 10 76.9% 25 51.0% 35 56.5% 0.01769

HER2+ 2 15.4% 3 6.1% 5 8.1%

TNBC 1 7.7% 21 42.9% 22 35.5%

Histologic types Ductal, NOS 11 84.6% 41 83.7% 52 83.9% NS

Lobular 1 7.7% 5 10.2% 6 9.7%

Metaplastic 1 7.7% 1 2.0% 2 3.2%

Neuroendocrine 0 0.0% 2 4.1% 2 3.2%

TMB 12.08 4–33 6.57 1–61 7.73 1–61 0.042909

Nuclear grade 2.5 2–3 2.4 2–3 2.5 2–3 NS

Tumor infiltrating lymphocytes 8.8% 1–25% 6.6% 0–60% 7.1% 0–60% NS

Abbreviations: DDR DNA damage repair, ER estrogen receptor, PR progesterone receptor, TNBC triple negative breast cancer, TMB tumor mutation burden

Table 2 Demographic characteristics and tumor mutation burdens of the study cohort (n = 62)

Total TMB high/intermediate TMB low p value

Case # 62 30 32

Age 53.8 30–78 54.6 31–74 53.1 30–78 NS

Location Primary 13 21.0% 6 20.0% 7 21.9% NS

Metastatic 49 79.0% 24 80.0% 25 78.1% NS

Biomarkers ER-positive 36 58.1% 19 63.3% 17 53.1% NS

PR-positive 18 29.0% 9 30.0% 9 28.1% NS

HER2-positive 5 8.1% 2 6.7% 3 9.4% NS

Triple-negative 22 35.5% 8 26.7% 14 43.8% NS

Histologic type Ductal, NOS 52 83.9% 26 86.7% 26 81.3% NS

Lobular 6 9.7% 3 10.0% 3 9.4% NS

Metaplastic 2 3.2% 1 3.3% 1 3.1% NS

Neuroendocrine 2 3.2% 0 0.0% 2 6.3% NS

Gene mutation p53 37 59.7% 20 66.7% 17 53.1% NS

PIK3CA 21 33.9% 9 30.0% 12 37.5% NS

BRCA (1/2) 6 9.7% 5 16.7% 1 3.1% 0.0002

Nuclear grade 2.5 2–3 2.5 2–3 2.4 2–3 NS

Tumor infiltrating lymphocytes 7.1% 0–60% 11.4% 0–60% 3.5% 0–10% 0.0018

Abbreviations: TMB tumor mutation burden, ER estrogen receptor, PR progesterone receptor
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we and others have demonstrated the frequency of dMMR
is very low in breast carcinomas [41–43]. In current study,
significantly higher TMB was observed in breast cancers
with DNA damage repair gene mutation(s) or BRCA (1/2)
gene mutation, suggesting the importance of DNA dam-
age repair proteins in maintaining DNA integrity and im-
mune reaction. Tumors with DDR mutations generally
represent a triple negative phenotype, higher tumor grade
and other aggressive features. However, no such correl-
ation was identified in tumors with DDR mutation. This
would be caused by the low number of the cases tested in
current cohort, thus, further studies with larger cohorts
would be warranted.
Current cohort included two metaplastic carcinomas,

one with a TMB value of 6 muts/Mb and the other one
with a TMB value of 3 muts/Mb. Although the meta-
plastic carcinoma case number is very small, the findings
of low TMB in these metaplastic carcinomas are consist-
ent with a recent study which reported that the meta-
plastic carcinomas consistently expressed a low TMB of
between 3 and 10 muts/Mb. In addition, two neuroen-
docrine carcinomas of our cohort also showed low TMB
values, consistent with a previous study demonstrating

neuroendocrine carcinomas of the breast tend to have
low TMB [44].
In our study, three cases had high TMB and all

showed prominent tumoral lymphocytic infiltrates, sug-
gesting the association between TMB and immune reac-
tion. Furthermore, of the three cases with high TMB,
two harbored MAGI2 mutations and one harbored a
PTEN mutation. MAGI2 was initially characterized as a
scaffolding protein that links cell adhesion molecules
and receptors to cytoskeleton and maintains the archi-
tecture of cell junctions [45]. Further studies have re-
vealed that MAGI2 promotes PTEN (tumor suppressor)
function to regulate several kinase signaling pathways
[46–48]. Additionally, MAGI2 is abnormally expressed
in high grade prostatic intraepithelial neoplasia and
prostate cancer compared to benign glandular epithe-
lium [49–53]. In a recent study, glioblastoma patients
who were not responsive to anti-PD-1 immunotherapy
were significantly enriched for PTEN mutations and
these PTEN mutations may induce a distinct immuno-
suppressive microenvironment, suggesting PTEN muta-
tions’ involvement in immune reaction regualtion [54].
PTEN gene mutations are not uncommonly observed in

Table 4 Three breast carcinoma cases with high TMB

Case Age (yr) Phenotype ER PR HER2 Gene mutations TMB (#/MB)

1 70 Lobular 95 0 Negative PIK3CA, PTEN, ARID1A, CDH1, CHD4, FAM123B, SMAD4, TP53 33

2 50 Ductal, NOS 90 0 Negative MAGI2*, PIK3C2B, PIK3CA, PIK3R1, SPEN, TP53 61

3 57 Ductal, NOS 99 0 Negative ERBB4, ESR1, GATA3, IGF1R, MAGI2**, PAX5 20

Notes: *MAGI2 S220*; **MAGI2 Q1193fs*35
Abbreviations: ER estrogen receptor, PR progesterone receptor, TMB tumor mutation burden

Fig. 2 Three cases with high tumor mutation burden. a-c Representative H&E images from three cases (#1–3) with high tumor mutation burden.
d Estrogen receptor IHC staining from case #1. 100x
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many solid tumors, and are associated with immune
suppression. In addition, loss of PTEN expression is cor-
related with up-regulation of PD-L1 in tumor cells and
causes alteration in the tumor microenvironment, such
as release of anti-inflammatory cytokines and significant
reduction of T-cell activity [55]. Our findings of MAGI2
mutation in breast carcinoma with high TMB warrant
future study to investigate MAGI2’s function in DNA re-
pair pathway and PTEN signaling pathway.
Although this is one of the first studies to investigate

TMB and its association with clinicopathologic features
and genetic alterations in breast carcinomas, the signifi-
cance of this study was limited by the small sample co-
hort (n = 62). The findings in current study need to be
confirmed by future studies with larger cohort.
In conclusion, our data has demonstrated TMB levels

were positively associated with TILs, but not any other
analyzed clinicopathologic characteristics including
breast cancer biomarker status, tumor histologic type
and tumor nuclear grade. In addition, significantly
higher TMB was observed in breast cancers with DNA
damage repair gene mutation(s) or BRCA (1/2) gene mu-
tation, suggesting the importance of DNA damage repair
proteins in maintaining DNA integrity and immune re-
action and breast cancer patients with DDR mutation
may benefit from immunotherapy.
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