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Abstract

Background: The conventional method for the diagnosis of malaria parasites is the microscopic examination of
stained blood films, which is time consuming and requires expertise. We introduce computer-based image
segmentation and life stage classification with a random forest classifier. Segmentation and stage classification are
performed on a large dataset of malaria parasites with ground truth labels provided by experts.

Methods: We made use of Giemsa stained images obtained from the blood of 16 patients infected with Plasmodium
falciparum. Experts labeled the parasite types from each of the images. We applied a two-step approach: image
segmentation followed by life stage classification. In segmentation, we classified each pixel as a parasite or
non-parasite pixel using a random forest classifier. Performance was evaluated with classification accuracy, Dice
coefficient and free-response receiver operating characteristic (FROC) analysis. In life stage classification, we classified
each of the segmented objects into one of 8 classes: 6 parasite life stages, early ring, late ring or early trophozoite, mid
trophozoite, early schizont, late schizont or segmented, and two other classes, white blood cell or debris.

Results: Our segmentation method gives an average cross-validated Dice coefficient of 0.82 which is a 13%
improvement compared to the Otsu method. The Otsu method achieved a True Positive Fraction (TPF) of 0.925 at the
expense of a False Positive Rate (FPR) of 2.45. At the same TPF of 0.925, our method achieved an FPR of 0.92, an
improvement by more than a factor two. We find that inclusion of average intensity of the whole image as feature for
the random forest considerably improves segmentation performance. We obtain an overall accuracy of 58.8% when
classifying all life stages. Stages are mostly confused with their neighboring stages. When we reduce the life stages to
ring, trophozoite and schizont only, we obtain an accuracy of 82.7%.

Conclusion: Pixel classification gives better segmentation performance than the conventional Otsu method. Effects
of staining and background variations can be reduced with the inclusion of average intensity features. The proposed
method and data set can be used in the development of automatic tools for the detection and stage classification of
malaria parasites. The data set is publicly available as a benchmark for future studies.
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Background

The conventional method of diagnosing malaria is the
microscopic examination of blood films using Giemsa
staining[1]. It is inexpensive and reliable but requires con-
siderable expertise and training of health care workers [1].
It is considered the most efficient method for the study
of parasites in different stages and the quantification of
parasitemia [2].

A number of studies have been performed for the detec-
tion of parasites using digital images of Giemsa-stained
blood films. Table 1 gives a description of the datasets
used in previous studies. Most studies were performed
on datasets with a small number of parasites except the
study by Lindner et al. [3]. Table 2 gives an overview of the
methods applied in previous studies. Most of the previous
studies were limited to the detection of parasites except
a few studies, which performed detection as well as stage
classification. Previous studies applied methods based on
histogram thresholding (color similarity, Otsu, local and
adaptive thresholding etc.), and morphological operations
as given in Table 2 and [4—12]. Most studies used only the
green color channel for detection of parasites. There is not
much literature on parasite detection using pixel classifi-
cation except [13] and [14]. The study by Diaz et al. [13]
presents pixel classification using different classifiers in
different color spaces but this study was performed with
only 60 parasites. The study by Vink et al. [14] was applied
to fluorescent stained parasites. Table 2 shows that in pre-
vious studies stage classification was performed mainly
with ring, trophozoite, schizont and gametocyte stages. A
detailed literature review was recently published includ-
ing other parasites than Plasmodium falciparum and other
staining techniques than Giemsa [15].

The contribution from this study is twofold. First, we
perform image segmentation with pixel classification and
evaluate it with cross-validated accuracy, Dice coefficient
and free-response characteristic curves (FROC). Second,
we perform a detailed analysis of the parasite life stage
classification with early, late and mature stages of the
parasite as opposed to previous studies with only ring,
trophozoite and schizont stages. We also include white
blood cells (WBCs) and debris in the classification task as
this inclusion improved performance.

Methods

Data description

The images used in this study were collected from patients
in Gambia, see Lemieux et al. [16] for details. Plasmod-
ium falciparum parasites were ex-vivo cultured between
24 and 48 h. Typically, parasites and red blood cells look
dark purple and light pink respectively in Giemsa stained
images [13] as shown in Fig. 1 and Fig. S4 of Lemieux et
al. [16]. Images vary from patient to patient due to stain-
ing variability and differences in the red blood cell density.
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Each image was a composite of 4 by 4 images of 1382 by
1030 pixels each, which we separated for analysis. In total,
the data set comprised 837 images from 16 patients. We
dropped one patient (coded 804 in [16]) as the staining
was flawed in this patient.

Ground truth image segmentation

We manually selected all dark-stained blobs which inclu-
ded parasites, white blood cells and debris. We cropped
the images around each of the dark-stained blobs. We
applied Otsu thresholding on the green channel for ini-
tial segmentation of parasites. We manually changed the
threshold to segment each parasite (or white blood cell or
debris) and adjusted the segmentation by hand, if needed.
We filled and cleaned the segmented regions using mor-
phological operations. In detail we used Matlab’s imfill()
with a connectivity of 8 and Matlab’s imdilate() with a disc
of radius 5 pixels as structuring element. We combined
all segmented cropped images into a ground truth binary
image.

Labeling of parasite life stages

The cropped images were presented to malaria experts
who classified parasites into ring (R), late ring or early
trophozoite (LR-ET), mid trophozoite (MT), early sch-
izont (Esch), late schizont (Lsch), segmenter (Seg), white
blood cells (WBC) or debris. The parasite life stages were
described as follows. R = light ring, LR/ET = fat rings with
dark cytoplasm, very small trophozoites with pigment; rif
stage, MT = pigment, vacuole, mid-size, LT = two nuclei,
very large, Esch = more than two nuclei, dark staining,
very large, Lsch = still has RBC, but clear merozoites, Seg
= no RBC (or very faint outline); bunch of grapes. Debris
is a left-over category for those blobs that could not be
clearly classified as parasites or WBCs. Figure 1 shows
images of parasites in different life stages from our dataset
and from [17]. The size of parasites increases from early to
late stages which can be observed from Fig. 1. There were
a total of 2911 parasites in different life stages, see Table 3.
As there is relatively limited class imbalance in the num-
ber of parasites in different life stages, we saw no need to
adjust for class imbalance. The focus in this study is not
on classification of WBC or debris, so number of cases in
those categories matters less.

To alleviate the burden we had several malaria experts
classify all images, but each image was classified by a sin-
gle expert. To benchmark the performance of our life stage
classification we had a second malaria expert reclassify a
balanced subset of 115 parasites into the same categories.

Image features and pixel sampling

Figure 2 gives an overview of the image processing
pipeline. We smoothed each image by convolution with a
Gaussian filter. The amount of smoothing is determined
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Table 1 Data sets. RBCs = red blood cells, WBCs = white blood cells

Study Number of images RBCs WBCs Parasites Cultured or patients Data public
Linder [3] 549 per patient 8329 In vivo Yes
Walliander [34] 473-505 32698 476 No information No

Malihi [21] 363 238 125 No information No

Savkare [22] 15 No information No

Tek [31] 630 3431 151 669 No information No

Diaz [28] 450 11844 713 In vitro No

Diaz [13] 25 1226 60 No information No

Ruberto [30] 12 1910 2 479 No information No

by the standard deviation of the Gaussian filter. A standard
deviation of zero amounts to no smoothing, effectively
keeping the original image, while a standard deviation
much larger than the size of the image leads to an image
where every pixel has the same value, the mean intensity
of the original image. We varied the standard deviation
of the Gaussian filter to find the optimal value for pixel
classification. We ran two main analyses. In the first one,
we performed pixel classification with three features, the
pixel values of the blurred red, green and blue channels. In
second analysis, we corrected for background and stain-
ing effects by including the average intensities of the whole
image in all color channels in the pixel classification, thus
increasing the number of features per pixel from 3 to 6.
We also ran one control analysis where we investigated
the use of two standard deviations of the gaussian blur
but found no clear performance benefit over using a single
one (results not shown). Two levels of gaussian blur could
improve performance as one of these levels would serve
for background correction and the second for smoothing.
Results of this control analysis show that simply averaging
each image is enough for background correction.

Table 2 Analysis methods

We considered two classes for pixel segmentation: para-
site pixels and non-parasite pixels. Parasite pixels included
pixels from parasites, white blood cells and debris while
non-parasite pixels included pixels from background and
red blood cells. As the parasites cover about 1% on aver-
age of each image, there is severe class imbalance. A trivial
classifier that assigns each pixel to the non-parasite class
would achieve a classification accuracy of 99%. To mitigate
class imbalance, we used balanced sampling by choosing
an equal number of parasite and non-parasite pixels. We
randomly selected 2.5 million pixels of parasites and 2.5
million pixels of non-parasites for training. Using a larger
number of pixels did not improve results. We ran a ran-
dom forest classifier on the training data. The random
forest classifier fits trees to randomly selected sub-sets of
the pixel data. Each tree classifies a pixel as a parasite or
a non-parasite. The probability (0 < p < 1) of a pixel to
belong to a parasite is obtained by dividing the number of
times a pixel is classified as parasite by the total number of
trees. These pixel probabilities form so-called probability
images and by thresholding them we obtained segmented
images. We choose a threshold value of 6,,, = 0.98 based

Study Color channel Methods Task
Linder [3] Green Histogram thresholding, Detection of parasite regions
support vector machine (SVM)
Walliander [34]  Green Adaptive histogram thresholding Segmentation and counting of RBCs
Malihi [21] Green Extraction of cell mask with Otsu Detection of parasites
thresholding, K-nearest neighbour (k-NN)
Savkare [22] Green Otsu thresholding, watershed segmentation, SYM  Segmentation of RBCs, detection of parasites
Tek [31] Grey Rao's method, K-nearest neighbour Detection of parasites, stage classification:
ring, trophozoite, schizont, gametocyte
Diaz [28] RGB Color space classification, Inclusion-Tree Detection of parasite, classification of stages:
representation, SVM ring, trophozoite, schizont
Diaz [13] RGB, Normalized  Pixel classification, k-NN Detection of parasite with pixel classification

RGB HSV, YCbCr

Ruberto [30] Green, HSV, RGB Morphological approach, color

histogram similarity

Segmentation of RBCs, detection of parasites, stage
classifications: mature trophozoite, immature trophozoite,
gametocyte
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Fig. 1 Stages of malaria parasite from our data set and literature [17]. See text for explanation of abbreviations

upon prior knowledge of the image area fraction covered
by parasite pixels. We show in the Results section that this
choice of the threshold is close to the optimal one. We
performed post-processing on the segmented images with
the morphological operation of filling, same parameters as
for the ground truth images. Post-processing assures that
segmented objects do not have holes due to misclassified
pixels inside the segmented objects. We removed those
segmented objects which had an area less than 100 pix-
els. This choice of 100 pixels is based on the area of the
smallest parasite.

Segmentation evaluation

We used three metrics to evaluate the performance of
pixel classification: the training set accuracy, the Dice
coefficient and the free-response receiver operating char-
acteristic (FROC). For all metrics, we used leave-one-out
cross-validation (LOOCYV) to quantify predictive perfor-
mance: we fitted the random forest to pixels from 15
patients and evaluated performance on the 16th patient
whose images were not used in training. We averaged
performance across the 16 left-out patients to obtain the
metrics reported below.

Pixel classification accuracy: Pixel classification accu-
racy is defined as the number of correctly classified pixels
divided by the total number of pixels. This metric eval-
uates performance on the balanced data set and hence
baseline performance is 50%.

Dice coefficient: The Dice coefficient (D,) quantifies the
overlap between segmented and ground truth foreground
pixels. It is also known as the F1-measure. It is defined as:

20N
(L + 1D

Cc

Table 3 Number of parasites in each stage
R LR-ET MT LT Esch

WBC
538 307 332 367 714 446 207 50 683

Lsch  Seg Debris

where I; and I, are the segmented and ground truth
images respectively and |x| denotes the number of fore-
ground pixels in x. The value of the Dice coefficient varies
between zero and one. It is zero when ground truth and
segmented images have no overlap and it is one when they
exactly coincide. As foreground pixels only cover around
1% of each image, baseline performance of a random clas-
sifier is also 1%. We summarized the Dice coefficient for
all images from a patient by the median and over all
patients by the mean.

Free-response receiver operating characteristic: The
free-response receiver operating characteristic (FROC) is
a generalization of the receiver operating characteristic
(ROC) to the case where there are multiple possible false
positives. This can occur in our setting as objects (blobs
in an image) might be segmented that do not overlap
with any of the ground truth objects (targets). To cal-
culate the FROC one needs to specify when a parasite
is detected. We considered any object in the segmented
image as a detected and localized parasite, when it had
a minimum Dice coefficient of 0.2 with a target parasite.
This minimum Dice coefficient is called the acceptance
Dice coefficient [18]. Any parasite localized and detected
within the acceptance Dice coefficient is considered a
true positive. All segmented objects that are not detected
through the acceptance Dice coefficient, are considered
false positives. All target parasites, which do not have
any segmented parasite within the acceptance Dice coef-
ficient are considered false negatives. The number of false
negatives follows from the number of targets minus the
number of true positives. Unlike ROC analysis there are
no true negatives in FROC analysis.

In FROC analysis, we draw a curve for the true posi-
tive fraction (TPF) as a function of the false positive rate
(FPR). The true positive fraction is defined as the number
of true positives divided by total number of targets in all
images. The false positive rate is defined as the number of
false positives divided by the number of images. Values of
the true positive fraction are between 0 and 1 while values
of false positive rates (FPR) can be greater than 1, which is
contrary to the conventional ROC analysis. In this study,
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Fig. 2 Flowchart of the parasite image segmentation method
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Stage classification

we fixed the FPR between 0 and 1.5 for comparison pur-
poses. True and false positives are obtained by changing
the value of 6,,,, the threshold of the probability map. We
obtained 40 different thresholds by changing the proba-
bility threshold from 0.98 to 1. For every threshold, we
obtained a segmented image on which we performed post
processing as detailed in the segmentation section.

We used a random guessing model as a reference. In
this model a random locations in the image are chosen
as parasite locations. Zou et al. [18] use radius as accep-
tance criterion instead of the Dice coefficient as we do.
As it is not clear how to specify a random guessing model
based on the Dice coefficient, we picked a conservative
acceptance radius of twice the radius of the largest parasite
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(2*78 = 156 pixels). The probability of a random location
of a parasite falling within the acceptance radius is the
ratio between the area of a circle with radius r and area ¥
of the image:

nr?

?¢

The guessing model is defined as [18]:

p:

TPF =1 — exp(—FPR x ¢),

where ¢ is defined as the odds 1%}. We calculated the area
under the curves of the guessing model and of the data.
A higher difference of the area between the curves of the
guessing model and the data means a better detection and
localization of parasites. At the expense of greater com-
plexity, FROC analysis provides insight into the trade-off
between detecting a larger fraction of the true parasites
and the false positives.

Life stage classification

We considered intensity, shape, moment and Haralick
features for life stage classification. Intensity features
included mean, standard deviation, median and quartile
intensity features. Shape features were area, perimeter,
minimum radius, maximum radius, mean radius and stan-
dard deviation of radius. Moment features were major
axis, orientation and eccentricity. Haralick features were
texture features as reported in [19]. In total we calculated
112 features for each of the three color channels. All fea-
tures were calculated using EBImage [20]. As we did for
the evaluation of segmentation, we performed LOOCV
and averaged accuracy across 16 patients.

We performed five analyses for a detailed study of the
life stage classification performance. First, we performed
stage classification separately with each channel to find
out which of the channels is more explanatory for the
stage classification. Second, we performed stage classifi-
cation with all channels to explore the combined effect
of all channels. Third, we combined the early and late
sub-stages into one stage to perform stage classification
with only three life stages: ring, trophozoite and schizont.
Fourth, we evaluated stage classification by excluding
white blood cells and debris. Fifth, we evaluated stage clas-
sification with 11 important features, which we obtained
from feature importance with the random forest classifier.

Otsu segmentation

Otsu segmentation is one of the most commonly applied
methods for segmentation [15, 21, 22]. We used the green
color channel because it gave best performance and it has
been used in many of the previous studies. We devel-
oped a new two-step Otsu segmentation method as this
gave better results than a simple Otsu segmentation. The
two steps are as follows: First, we applied Otsu’s method
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to detect background (parts of the image not covered by
RBC or WBC) and foreground (red blood cells and para-
sites). Then we inverted the intensity of the background.
Second, we applied three-level Otsu [23] segmentation
on the background-inverted image. We used the lowest
threshold from the second step on the green channel
to segment the parasites. On the segmented image we
applied the morphological operations of filling with 8-
connected background neighbors and of dilation with a
disk structure with radius of 5 (same as used for pixel
classification).

Software packages

We used R (version 3.2.1) [24] and the package Random-
Forest (version 4.6-10) which is based on Breiman’s ran-
dom forest algorithm [25, 26]. We used 100 trees for pixel
classification. We used the EBImage package for Gaussian
blur and feature calculations for stage classification [20].
We used a Random Forest with 500 trees for stage clas-
sification. We used Matlab r2014b for Otsu segmentation
and for making the figures.

Results

Image segmentation

We first set out to determine the optimal level of smooth-
ing and whether the basic approach with 3 features for
each pixel could be improved upon. Figure 3 shows how
the cross-validated accuracy (left panel) and the Dice
coefficient (right panel) vary with different standard devi-
ations of the Gaussian blur. Figure 3 also shows the effect
of inclusion of the average intensities of red blood cells
and background. Results suggest that the pixel classifier
performs better with average intensity features. We get an
accuracy of 95.6% for a standard deviation of 10 pixels of
the Gaussian blur.

The Dice coefficient is calculated over all pixels of all
images unlike the accuracy which is calculated over a
balanced data set only. The optimal value of the Dice
coefficient is obtained for a standard deviation of 8 pix-
els both with and without average intensity features. The
maximum value of the Dice coefficient is 0.76 with-
out average intensities while with average intensities,
we get a maximum of 0.82. Results show that inclu-
sion of the average intensity features helps in correcting
for the red blood cell (RBC) density and variability of
staining and improves the accuracy as well as the Dice
coefficient.

Next, we explore how sensitive performance is for our
choice of probability threshold of 0.98. Figure 4, which is
made with a blurring factor of 8 pixels, shows that the
optimal value of the Dice coefficient is 0.823 at thresh-
old value of 0.973 which is close to the Dice coefficient
of 0.821 obtained with the threshold value of 0.98. Per-
formance is not strongly affected by the exact value of
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the probability threshold, provided one takes a threshold
between 2 to 5 times the estimated fraction covered by
parasites.

Figure 3 shows an accuracy of 90.7% with an average
Dice coefficient of 0.70 using a two-step Otsu segmen-
tation. The accuracy of the Otsu method is calculated
from balanced data for comparison with the accuracy
from pixel classification. The Dice coefficient of Otsu seg-
mentation is about 13% lower than the Dice coefficient
obtained with pixel classification. Thus pixel classification
performs better than the Otsu method.

Figure 5 shows FROC curves obtained with average
intensity features, without average intensity features and

by the Otsu method. With average intensity features, the
difference of area between curves of the guessing model
and the empirical data is 1.13 while without average inten-
sity features, the difference is 0.97. These results also
suggest that inclusion of the average intensity features
improves the performance of pixel classification. Also
shown is the performance of three-level Otsu segmen-
tation in Fig. 5. This achieves a true positive fraction of
0.925 at the expense of a high false positive rate of 2.45. In
contrast the pixel classifier with average intensity features
achieves a true positive fraction of 0.925 for a false positive
rate of 0.92, a two and a half fold reduction relative to Ostu
segmentation.
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0.82

Dice coefficient

0.76 0.77 078 0.79 0.80 0.81

| | T
0.90 0.92 0.94

1 T T
0.96 0.98 1.00

threshold

Fig. 4 Dice coefficient as a function of probability threshold
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Life stage classification

By performing stage classification separately on each color
channel, we find that the green channel gives slightly bet-
ter performance than the red and blue channels. We get
accuracies of 55%, 54% and 53% for the green, blue and red
channels respectively. When we perform stage classifica-
tion with all channels, we find an accuracy of 58.8% which
is better than the performance with individual channels.
Table 4 shows the confusion matrix obtained from the
classifier. We see from Table 4 that life stages are mostly
confused with their neighboring stages. For example, LR-
ET is mostly confused with the R and MT stages. Similarly
MT is mostly confused with LR-ET and LT. On com-
bining, R with LR-ET, MT with LT and Esch with Lsch,
we get an accuracy of 82.7%. If we exclude WBCs and
debris from the stage classification, we are left with only
parasite stages. Classification performance is about 60%
when excluding WBCs and debris, which shows that these
classes improve performance. Finally we performed stage
classification with 11 important features. These features
were area, perimeter, standard deviation, mean intensities
and contrast features of the red, green and blue channels.
We get an accuracy of 57% with these features which is
only slightly lower than the accuracy with all features.

Discussion
We constructed a dataset with almost 3000 seg-
mented and labeled Plasmodium falciparum parasites. We

publicly share this data set as a resource for future studies
(27).

This study proposes parasite segmentation using a ran-
dom forest classifier for pixel classification. We evaluated
our proposed segmentation approach with three met-
rics: cross-validated accuracy, Dice coefficient and FROC.
All metrics suggest that pixel classification is better than
the Otsu method and that inclusion of average inten-
sity features improves performance of the pixel classi-
fier. The proposed method also generalizes to unseen
images of Plasmodium falciparum obtained from the web-
site of the Centers for Disease Control and Prevention
(CDC). Results from the CDC images are presented in the
Appendix.

The free-response receiver operating characteristic
(FROC) is a generalization of ROC analysis to the case
where the number of false positives can be larger than 1.
It is commonly used for the evaluation of diagnostic sys-
tems. None of the previous studies in Table 2 used FROC
analysis for evaluation of their results. FROC analysis
quantifies the trade-off between true and false positives.
True positives are those segmented images patches that
have a minimum overlap with a ground truth patch, where
the minimum overlap is defined as a Dice coefficient of
0.2. Our results show that FROC analysis can be used
for malaria parasite detection to illustrate the trade-off
between true and false positives. FROC analysis shows
that pixel classification performs considerably better than
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Table 4 Average confusion matrix with overall accuracy of 58.8%
R LR-ET MT LT Esch Lsch Seg WBC Debris Accuracy(%)
R 385 31 8 4 10 6 2 1 91 71.6
LR-ET 49 179 32 6 2 1 0 0 38 58.3
MT 8 51 188 52 8 0 1 0 24 56.6
LT 6 18 67 145 112 6 0 0 13 395
Esch 1 5 18 72 484 81 14 0 29 67.8
Lsch 8 2 8 6 212 165 32 0 13 370
Seg 3 1 6 2 50 39 95 0 1 459
WBC 1 0 0 0 1 1 0 42 5 84.0
Debris 102 30 22 14 37 5 4 7 460 67.6

Otsu segmentation as the number of false positives for
pixel classification is less than half the number for Otsu
segmentation for the same true positive fraction.

Most of the previous studies on malaria parasite detec-
tion were performed by thresholding or by morphological
methods as detailed in Table 2 and [15]. Some recent
studies [6, 7] applied deep learning and neural network
methods to classify red blood cells into healthy or infected
ones. Rajaraman et al. [7] uses a level-set based method
and multi-scale Laplacian of Gaussian (LoG) filter to seg-
ment red blood cells as opposed to direct detection of
malaria parasites with pixel classification in our study.
Their study shows that a pre-trained ResNet-50 outper-
forms other deep learning methods and that the last layer
of the neural network does not always give optimal fea-
tures to classify cells. The accuracy of their method is
98.6% while current study reports an accuracy of 95.6%
without the extra step of segmentation of red blood cells.
Sorgedrager [6] applies pixel classification with a convolu-
tional neural network to classify parasite or non-parasite
pixels and it reports an accuracy of 97.3% but the study is
limited to only ten images.

Most of the previous studies report life stage classifica-
tion with ring, trophozoite and schizont [28-30], but the
current study reports it with sub-stages. The accuracy of
stage classification is relatively low because sub-stages are
close to each other in appearance, which can be observed
from the confusion matrix (Table 4). We find a classifica-
tion accuracy between 55 and 60%. To put this accuracy
in perspective we had a second expert classify a balanced
subset of 115 parasites. The agreement between the two
experts was 38%. The agreement between the classifier
and the first expert was 51% while agreement between
the classifier and the second expert was 29%. The agree-
ment between the classifier and the first expert is naturally
higher because the classifier was trained on data from the
first expert. The agreement is lower than the reported
accuracy of 58.8% (on all of the data) because the sub-
set was apparently more difficult to classify. Importantly,

the results of the second expert show that the task is dif-
ficult and that the average performance of our proposed
life stage classification method (40% = average agreement
with first and second expert) is comparable to the agree-
ment between experts. Ruberto et al. [30] also reports
disagreement among experts on life stage classification of
parasites. By combining life stages in only three classes,
ring, trophozoite and schizont, our classification accuracy
is 82.7% which is comparable to the accuracy of 89% and
84.87% as reported by Boray et al. [31] and Diaz et al.
[28]. Current study reports results of stage classification
on 2911 parasites as whereas [31] reports 669 and [28]
243 parasites. Rosado et al. [4] reports accuracies of 73.9%
and 94.8% for classification of trophozoites and game-
tocytes with 585 and 58 parasites respectively. Previous
studies were performed with relatively small datasets for
stage classification while the current study explores per-
formance with a relatively large dataset. Lastly, previous
studies report slightly better results on stage classification
possibly because they were performed with images of in-
vitro cultured parasites, that have less variation and fewer
artifacts than field study parasites.

In future studies, it would be interesting to explore other
methods such as deep learning for both pixel segmenta-
tion and stage classification. It would also be interesting
to explore segmentation and classification of different
species of the malaria parasite. Based upon the results
and algorithms developed in the current study, it might be
feasible to develop a mobile application for the detection
and stage classification of malaria parasites from Giemsa
stained images. Such an application would be helpful in
areas where there is a shortage of resources for early
detection of malaria.

Conclusion

In summary, we find that the inclusion of the average
intensities as features in the pixel classification improves
segmentation. Our method outperforms traditional seg-
mentation methods. FROC analysis is used for the first
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time in the study of malaria image analysis for the object-
level evaluation of segmentation. Lastly, we publicly share
our data set of original images, ground-truth segmenta-
tion and life stage classification as a resource for future
studies.

Appendix: CDC data set

The Centers for Disease Control and Prevention (CDC)
report exemplary images of Plasmodium falciparum on
their website [33]. We used these CDC images as a valida-
tion data set to evaluate our pixel classification approach.
These images were collected from different sources and
were not used for training so can function as an indepen-
dent validation. We downloaded 13 images of thin blood
films from the CDC website. Each image was 300x 300
pixels, 8-bit RGB and JPEG-encoded. We manually cre-
ated a ground truth segmentation for these images with an
identical procedure as for the Lemieux data set. We found
a total 39 malaria parasites (infected red blood cells).
The parasites were classified in three life stages (ring,
trophozoite or schizont) by the CDC. All parasites in an
image were in the same life stage. There were 5 images
with rings, 5 images with trophozoites and 3 images with
schizonts.

An issue with the images from the CDC is that they
have different and unknown magnifications of the micro-
scope used to image the thin blood film slides. In order
to adjust for this, we used the size of red blood cells as
yardstick. We measured the diameter of 50 red blood cells
in our training images and found the average diameter to
be 124 + 5 pixels. We similarly measured the diameter of
four red blood cells in each of the CDC images and found
it to vary from 40.3 to 69.5 pixels. We used the ratio of
red blood cell diameters to scale the standard deviation
of the Gaussian blur. We then blurred the CDC images
with this scaled standard deviation and used the trained
random forest classifier to segment them. We trained our
random forest classifier on data from all patients (with-
out cross validation). As we did in training, we removed
all segmented objects smaller than 100 pixels scaled by
the same red blood cell diameter based scaling factor. The
100 pixels minimum size stems from the smallest parasite
(100 pixels) in the training images (See methods: Image
features and pixel sampling).

In supplementary data, we show the results of segment-
ing the CDC images as overlapping images of segmen-
tation and ground truth. Segmented pixels are colored
green, ground truth pixels are colored red while the over-
lapping ones are colored yellow. The title of each image
gives the name of the image file (from the CDC web site)
and number of detected and infected red blood cells. We
chose to report the number of detected and infected red
blood cells as opposed to the number of detected and
present parasites as many red blood cells were infected
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with multiple parasites. Multiple infection of red blood
cells is considered to be an artifact of in-vitro infection
and is rare in-vivo. As our pixel classifier segmentation
is trained on in-vivo-like data, we did not consider the
multiple infection artifact. Also reported in the title of
each image is Dice coefficient. The average Dice coeffi-
cient over all images is 0.66 (median value is 0.72) which
is lower than the cross-validated mean value of 0.82 found
for the training images. Despite this lower Dice coefficient
it is clear from inspection of the CDC images that our
segmentation method generalizes well to unseen data.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/513000-020-01040-9.

[ Additional file 1: CDC data set. }
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