
RESEARCH Open Access

Chronic cholestasis detection by a novel
tool: automated analysis of cytokeratin 7-
stained liver specimens
Nelli Sjöblom1* , Sonja Boyd1, Anniina Manninen2, Anna Knuuttila2, Sami Blom2, Martti Färkkilä3† and
Johanna Arola1†

Abstract

Background: The objective was to build a novel method for automated image analysis to locate and quantify the
number of cytokeratin 7 (K7)-positive hepatocytes reflecting cholestasis by applying deep learning neural networks
(AI model) in a cohort of 210 liver specimens. We aimed to study the correlation between the AI model’s results
and disease progression. The cohort of liver biopsies which served as a model of chronic cholestatic liver disease
comprised of patients diagnosed with primary sclerosing cholangitis (PSC).

Methods: In a cohort of patients with PSC identified from the PSC registry of the University Hospital of Helsinki,
their K7-stained liver biopsy specimens were scored by a pathologist (human K7 score) and then digitally analyzed
for K7-positive hepatocytes (K7%area). The digital analysis was by a K7-AI model created in an Aiforia Technologies
cloud platform. For validation, values were human K7 score, stage of disease (Metavir and Nakunuma fibrosis score),
and plasma liver enzymes indicating clinical cholestasis, all subjected to correlation analysis.

Results: The K7-AI model results (K7%area) correlated with the human K7 score (0.896; p < 2.2e− 16). In addition,
K7%area correlated with stage of PSC (Metavir 0.446; p < 1.849e− 10 and Nakanuma 0.424; p < 4.23e− 10) and with
plasma alkaline phosphatase (P-ALP) levels (0.369, p < 5.749e− 5).

Conclusions: The accuracy of the AI-based analysis was comparable to that of the human K7 score. Automated
quantitative image analysis correlated with stage of PSC and with P-ALP. Based on the results of the K7-AI model,
we recommend K7 staining in the assessment of cholestasis by means of automated methods that provide fast
(9.75 s/specimen) quantitative analysis.
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Background
A core needle biopsy specimen from the liver is the gold
standard for the diagnosis of liver diseases and is consid-
ered particularly important in the assessment of inflam-
matory activity and stage of fibrosis [1]. Cytokeratin

7(K7) is a common immunohistochemical (IHC) marker
for chronic cholestasis in liver biopsies - especially in
liver diseases with biliary tract inflammation [2]. In the
normal liver, K7 expression occurs in the biliary epithe-
lium, whereas hepatocytes remain negative. However, in
chronic cholestasis, periportal hepatocytes and inter-
mediate hepatobiliary cells (progenitor cells) stain posi-
tive for K7 [3, 4]. Thus, bile duct loss and chronic
cholestasis can be distinctly elucidated via K7 stain [5].
Moreover, the K7 stain correlates with the biochemical
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markers of cholestasis: plasma alkaline phosphatase
(P-ALP) and plasma bilirubin (P-Bil), and a bio-
marker of cytolytic activity: plasma alanine amino-
transferase (P-ALT) [6, 7]. Some studies indicate
that the K7 stain should be considered as a prognos-
tic marker for rapidly progressive chronic cholestatic
cholangiopathies [6–9]. One caveat with the K7 ana-
lysis—as with any image analysis based on an evalu-
ation conducted by an individual pathologist—is,
however, that it is not entirely objective, having
intra- and interobserver variability [10]. In addition,
it would be presumably very time-consuming for a
human being to calculate in a histological sample all
the cells of a certain type.
Automated image analysis is a potential solution for

this problem. Artificial Intelligence (AI) by convolu-
tional neural networks (CNNs) is a powerful technol-
ogy for pattern recognition and image classification
[11, 12]. Additionally, it is a suitable instrument for
medical image analysis in various fields, including
pathology. It displays the potential to improve per-
formance of the analysis in certain applications [13,
14]. CNNs are machine-learning algorithms that re-
quire image data and labels as input, from which the
CNN learns and extracts image features. In the case
of supervised learning, the CNN is trained by using
human-made training annotations [11, 15]. In histo-
pathology, this means that a human being annotates
desired features by labelling digital images of tissues
[13, 14]. In the case of semantic segmentation, the
annotations provided by a human being are pixel-
level image segments that represent the classes to be
learned by the CNN (for example hepatocytes or por-
tal tracts). The output data of a CNN consists of in-
terpretation and classification of images based on the
features learned from the input data [11, 12, 15].
We aimed to build a CNN-based AI model for the

automated detection of K7-positive hepatocytes (K7-
AI model). To our knowledge, such digital tools have
not been previously studied in assessment of chronic
cholestasis. Nested layer structures of CNNs have
proven their excellence in fully automated complex
image analysis tasks compared to the traditional com-
puter vision [12, 16, 17]. Thereby, we aimed to ex-
plore the potential of CNNs, and the commercial
cloud-based Aiforia® platform in this particular set-
ting. To validate the AI model and its results, we uti-
lized a traditional scoring method performed by a
liver pathologist (human K7 score) of K7-stained
whole-slide images (WSIs). To further test the per-
formance of the K7-AI model within our cohort of
patients with PSC, we studied the K7 load in liver tis-
sue and its correlation with first, the amount of fibro-
sis, and second, the P-ALP levels.

Methods
Patient cohort and liver biopsies
The department of gastroenterology at Helsinki
University Hospital (HUH) maintains a 2010-founded
registry of a PSC patient cohort, a registry including
clinical and laboratory parameters, ERC (endoscopic
retrograde cholangiography) scores, cytology, and
histology reports from almost 1000 PSC patients.
The PSC diagnosis of the cohort utilized here was
primarily based on magnetic resonance cholangio-
pancreatography (MRI-MRCP) or on ERC. A histo-
logical liver specimen (from a core-needle biopsy) is
retrieved from most of the PSC patients in our cen-
ter to exclude concomitant autoimmune hepatitis
and to confirm the diagnosis in cases with mild
intrahepatic disease in imaging (by ERC). The cohort
of this study consists of patients with liver biopsies
performed between 1988 and 2018.
The rationale behind our choice of this particular pa-

tient cohort is the specific histological appearance of
PSC in the liver tissue as the disease progresses. PSC is a
chronic progressive cholangiopathy [18] resulting in
cholestasis, and cholestasis, when chronic, is indicated
by K7-positive hepatocytes in a liver specimen [6–9].
For clinical data on our patient cohort, see Table 1. In

318 patients, we did 366 liver biopsies (1988–2018), and
207 of them provided representative K7-stained liver
specimens numbering 210.
Written informed consent was obtained from each pa-

tient included in the study. The study protocol confirms
to the ethical guidelines of the 1975 Declaration of
Helsinki as reflected in a priori approval by the institu-
tion’s human research committee (license number 278/
13/03/01/09, Ethical Statement of the Internal Medicine
§ 305, HUH).

Table 1 Primary sclerosing cholangitis (PSC) patient cohort and
liver biopsies

Number of patients 318

Number of patients, male 182 (63%)

Age at diagnosis in years, mean, (range) 34.9 (10–75)

Duration of disease (years) at liver biopsy,
mean (range)

3.26 (0–25)

Stage of fibrosis (Metavir, 0–4) in liver
specimen, mean, (range)

1 (0–4)

Biopsies with stage 0 (Metavir) fibrosis, % 44.75

Biopsies with stage 1 (Metavir) fibrosis, % 24.59

Biopsies with stage 2 (Metavir) fibrosis, % 19.14

Biopsies with stage 3 (Metavir) fibrosis, % 8.33

Biopsies with stage 4 (Metavir) fibrosis, % 3.19

Plasma ALP (U/l) levels ±3 months from liver
biopsy, mean ± SD, (range)

216.75 ± 198.38 (42–1514)
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Liver biopsies and immunohistochemistry
All liver biopsies were acquired under ultrasound guid-
ance as part of a routine diagnostic liver-disease workup.
All specimens were fixed with formalin. Two of the most
important staining methods applied for routine liver-
biopsy diagnostics in our laboratory (Diagnostic Centre,
HUH, Dept. of Pathology) include the histochemical
Herovici stain to highlight collagen and fibrosis in liver
tissue, and the K7 immunohistochemical stain to high-
light bile-duct epithelium and cholestatic hepatocytes.
We performed K7 staining of the biopsy specimens in

the pathology laboratory of the Diagnostic Centre, HUH,
according to the standard staining protocol. Three-
micrometer sections were cut from the formalin-fixed
paraffin-embedded (FFPE) needle biopsy specimens. A
Ventana Benchmark Ultra instrument (SP52, Roche 790–
4462; Roche, Tucson, AZ, USA) served as the staining in-
strument for the K7 antibody. Pre-treatment was done
with Cell Conditioning 1 buffer, pH 8.5, (Roche 950–124),
for 64min at 98 °C. Incubation for K7 antibody was 16
min at 37 °C. A multimer-based detection kit, Ultraview
(Roche 760–500), served for detection of the K7 antibody
(8min at 37 °C). The reaction was visualized with DAB (3,
3′-diaminobenzidine, Roche 760–500), and sections were
counterstained with hematoxylin.

Imaging and software
We acquired the digital WSIs of the K7-stained and
Herovici-stained histological slides by means of a Pan-
noramic SCAN II 150 (3DHistech) scanner. The object
magnification was 20x, and the original pixel size was
0.221 μm. The WSIs were uploaded to Aiforia® Cloud, a
commercial cloud-based platform for managing, sharing,
and viewing WSIs as well as for training CNNs for auto-
mated image analysis of WSIs. If the histological slide
included more than a single needle biopsy section, we
manually assigned a region of interest (ROI) to avoid
double-analysis. The ROI selected for the analysis con-
tained an entire section of the needle biopsy specimen
to avoid selection bias.

CNN training – creating the K7-AI model via supervised
learning
We trained the same CNN algorithm using three inde-
pendent datasets for supervised semantic segmentation
of the liver histology and quantitation of K7-positive he-
patocytes. The final K7-AI model included all three in-
dependent and nested CNNs, all trained in the Aiforia
platform. For the final structure of the AI model see
Fig. 1. The first CNN model was trained to classify liver
tissue. The second model was trained to segment liver
parenchyma and portal areas within the liver tissue seg-
ment. The third model was trained to classify K7-
positive hepatocytes within the parenchyma segment.

The periportal ductular reaction and possible small bile
ducts within the parenchyma have been trained to the
AI model and segmented in the portal areas. Thus, the
AI model will be able to separate K7-positive hepato-
cytes from the bile duct epithelium, since they are lo-
cated in different classes within the CNN.
During model inference, the three CNNs were run as

a single pipeline on the WSIs. The full training dataset,
including 70 WSIs selected from the whole cohort of
210 WSIs, was intended to represent all variation in the
cohort. The ground truth for annotating the different
image features in the training material (70 WSIs) is in
Additional file 1: Table 1. The input data which consti-
tutes the training annotations made in the training set
(training regions) are in Additional file 1: Table 2. An in-
dependent set of 57 cases from 210 WSIs was used for
validation purposes and excluded from the training ma-
terial. The remaining 83 WSIs were later analyzed by the
complete K7-AI model and included in the correlation
analysis demonstrated in the results.
The cutoff for positivity of hepatocytes in the K7 stain

is in Fig. 2. The cells pointed with red arrows are stained
only lightly and were excluded from the annotations in
order to emphasize K7-positive hepatocytes for the AI
model. The hepatocytes stained deeper brown (in Fig. 2)
and circled with green were considered positive and
taught to the AI model as positively stained hepatocytes.
Staining intensity varies in the image material to some
extent, due to the age differences among biopsy speci-
mens. The real-world variance of the feature of interest
should be presented as well as possible in the training
data in order to achieve a high-performing CNN. Thus,
including older biopsy specimens with potential fading
in the IHC stain in the training set led to development
of a model able to manage the analysis of older sections.
The perceptive field diameter (field of view) applied

was 100 μm for the liver tissue layer, 50 μm for the por-
tal areas and liver parenchyma layer, and 20 μm for the
K7-positive hepatocyte layer. The training data was en-
hanced by the image augmentation presented in Add-
itional file 1: Table 3. All training data and a maximum
of 20,000 iterations served in the final training for all
CNNs. If training loss was not reduced in 200 consecu-
tive iterations, training automatically came to a halt.

Validation of K7-AI model performance
To independently validate the performance of the final
and complete K7-AI model, meaning its ability to detect
features it had not previously encountered in the train-
ing set, a board-certified pathologist and specialist in
liver diseases (S. Boyd) performed human K7 scoring.
The scoring was performed for 57 WSIs that were sepa-
rated from the training material as an independent valid-
ation set. This validation set constituted altogether
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27.1% of the whole image material (210 images). The hu-
man K7 score was performed according to the protocol
in Table 2 [19]. Well-established scoring systems are
lacking for PSC. Thus, we applied the aforementioned
protocol in our study, originally designed for scoring
liver specimens of patients with primary biliary cholan-
gitis (PBC), for its prognostic properties validated specif-
ically in a PSC liver specimen cohort in an international
multi-center study [20]. The K7-AI model’s results
(K7%area) in the validation set of 57 WSIs were then
correlated with the human K7 score. In addition to the
validation set, the human K7 score was evaluated for the

whole material (210 specimens) by applying the protocol
in Table 2 [19]. Finally, the human K7 score and the K7-
AI model’s results (K7%area) were correlated to confirm
K7-AI model performance.

Comparison of the K7-AI model’s results (K7%area) with
biochemical examinations and with disease stage
The entire material (210 WSIs) was analyzed with the
K7-AI model. Image data analyzed by the K7-AI model
was examined categorically from the specimens in the
following order: 1. area of liver tissue, 2. area of paren-
chyma and portal areas and their proportions of the liver

Fig. 2 Cut-off staining intensity for K7-positive hepatocytes. Cells pointed with red arrows are considered negative, because they are stained too
lightly. Thus, they are excluded from the training annotations made for the AI model. The darker brown hepatocytes circled in green were
considered positive. They were annotated in the training phase to demonstrate and teach the AI model what K7-positive hepatocytes look like

Fig. 1 The structure of the final AI model. The three independent and nested CNNs that were trained by semantic segmentation are 1) liver
tissue, 2) parenchyma and portal areas and finally 3) the K7-positive hepatocytes. Ductular proliferation and original bile ducts are trained and
included in the portal areas’ layer
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tissue, and 3. proportion (%) of K7-positive (cholestatic)
hepatocytes from the parenchyma (K7%area).
Validation of the K7-AI model’s results required com-

paring analysis of the AI model with the human K7
score. As a complementary validation analysis, we also
compared the K7-AI model’s results with fibrosis (in-
cluding both Metavir- and Nakanuma-stage) scores, as
well as with the clinical data of the cohort extracted
from the PSC registry.
According to the literature, in a PSC liver biopsy

specimen, the amount of fibrosis highlights the pro-
gression of the disease [20–23]. Thus, for validation
purposes, a board-certified liver pathologist (S. B) per-
formed histological scoring of fibrosis scores accord-
ing to the Nakanuma classification [19, 24] from the
Herovici-stained WSIs of the same cohort (Additional
file 2: Fig. 1). See in Table 2 the formula for the
Nakanuma fibrosis score [19]. In addition, original
structured histological reports, ones serving previously
for clinical purposes, were included in fibrosis evalu-
ation. All liver biopsies in our laboratory receive esti-
mated Metavir scores from 0 to 4 depending on
amount of tissue fibrosis [25]. Metavir scores from the
PSC registry for the biopsy specimens in this study
had all been evaluated by a number of liver patholo-
gists in our laboratory between 1988 and 2018. Meta-
vir score was available for 182 biopsy specimens.
The objective was also to measure whether one scor-

ing method (Nakanuma vs Metavir) would outperform
the other when calculating correlations between fibrosis
stage and analysis of the K7-AI model (K7%area).
Clinical data included P-ALP level measurements (U/l)

(n = 112). These levels correlate well with clinical stage
of cholestasis [21]; here, the levels were measured as
close as possible of the biopsy date (± 3 months). The

other clinical markers of chronic cholestasis, such as
plasma gamma-glutamyl transferase (P-GT) U/l, along
with P-ALP levels, were compared to our AI model’s
analysis (K7%area) to learn whether these parameters
showed any correlation.

Statistical analysis
Analysis data (K7%area of each biopsy) of the 210 im-
ages was exported from Aiforia in one format of a CSV
file. All the statistics were computed using R (Version
3.5.2; R Foundation for Statistical Computing, Vienna,
Austria, 2018) and the ggplot2 (Hadley Wickham,
Springer-Verlag, New York, NY, USA 2016) package.
Spearman coefficient correlation were calculated to

examine the correlation between laboratory parameters
and K7%area, and between fibrosis stage and K7%area.
Pearson correlation coefficient were calculated to exam-
ine the correlation between laboratory parameters and
K7%area, and between stage of fibrosis and K7%area. A
natural logarithmic (ln) transformation performed on
the continuous variables met the normality assumption
of the Pearson correlation coefficient test. We consid-
ered correlations significant at p ≤ 0.05.

Results
K7-AI model ready to go
Our results, reflecting how well the K7-AI model had
learned the features in opposition to the training annota-
tions, were examined after each training round. For the
K7-AI model’s visual interpretation (visual results) of
histological images see Fig. 3. Results were based on the
features annotated in the images in the training phase.
The total areas of errors in each layer of the AI module
are in Table 3, along with the precision and sensitivity
percentages for segmentations in each layer.

Table 2 Deposition of K7 in hepatocytes in a liver biopsy specimen and stage of fibrosis according to Nakanuma classification.
Deposition of orcein-positive granules in Nakanuma classification has been replaced with a similar model, along with applying the
deposition of K7-positive hepatocytes in the evaluation of chronic cholestasis. Adapted from [Nakanuma, Y., Zen, Y., Harada, K.,
Sasaki, M., Nonomura, A., Uehara, T., et al. [19]. Application of a new histological staging and grading system for primary biliary
cirrhosis to liver biopsy specimens: Interobserver agreement. Pathology International, 60(3), 167–174, [19]

Deposition of K7-positive hepatocytes (score 0–3) Scoring protocol

0 No K7-positive hepatocytes

1 K7 positivity in at least ten hepatocytes in one periportal area (zone 1)

2 K7 positivity in at least ten hepatocytes in 1/3–2/3 of periportal areas

3 K7 positivity in at least ten hepatocytes in more than 2/3 of periportal areas

Nakanuma classification - stage of fibrosis in a liver biopsy specimen

Stage of fibrosis (0–3) Scoring protocol

0 No portal fibrosis or fibrosis limited to portal tracts

1 Portal fibrosis with periportal fibrosis or incomplete septal fibrosis

2 Bridging fibrosis with variable lobular disarray

3 Liver cirrhosis with regenerative nodules and extensive fibrosis
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Fig. 3 a A standard cytokeratin 7 (K7) immunohistochemical stain of a liver core biopsy. b The black circle illustrates the training region, the red
circle the annotation region, both drawn by a pathologist to teach the AI model to recognize liver tissue in the image. Space within the black
circle but outside the red circle is considered background and not tissue. c The red area is what the K7-AI model considers liver tissue. d The
same K7 stain of the same liver biopsy specimen with e training annotations drawn by a pathologist to teach the AI model the difference
between portal areas and liver parenchyma. Within the black training regions, circled green areas represent the portal areas and red-circled areas
represent parenchyma. f K7-AI model inference mask, meaning the interpretation of the AI model of the specimen. Accordingly, green areas are
what the AI model considers as portal areas and red areas are liver parenchyma. g Notice the multiple cholestatic DAB-positive hepatocytes in
this K7-stained biopsy specimen. h Red annotation regions within the training regions (black) are the areas taught to the AI model as K7-positive
hepatocytes within the liver parenchyma. i The red areas are what the K7-AI model interprets as K7-positive hepatocytes after training

Table 3 Total area errors, precisions and sensitivities per each layer. Since there are two classes in the portal areas and parenchymal
layer, highest class-specific errors have been evaluated for both classes. Total area errors are the sum of false positive (FP) and false
negative (FN), namely the total errors per training areas in each layer of the AI model

Layer for Liver Tissue Layer for Portal areas
& Parenchymaa

Layer for K7 positive
hepatocytes

Total area error (%) 0.56 2.6 0.24

Precision of the segmentation (%) 99.4 98.4 92.9

Sensitivity of the segmentation (%) 99.6 98.3 91.8

Highest class-specific error accepted per class % (FP%/FN%1) 1.02% (0.63%/0.39%) 2.26% (1.03%/1,23%)2,
6.82% (3.42%/3.40%)3

15.24% (7.00%/8.24%)

aSince there are two classes in the portal areas and parenchymal layer, highest class-specific errors were evaluated for both classes
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Errors in CNN inference may raise the false-negative
error of the subsequent CNN, because the previous
CNN clips the region of the subsequent CNN; training
annotations for the subsequent CNN outside the clip-
ping mask of the previous CNN are therefore undetect-
able. The highest class-specific errors are illustrated in
Table 3.

Analysis of the validation set – 57 images
Performance of the K7-AI model was independently val-
idated in a set of 57 WSIs before our analysis of the en-
tire cohort (210 WSIs). The total time to complete
inference of the full K7-AI model pipeline with three
CNNs for the 57 WSIs was 9 min, 16 s, averaging 9.75 s
per biopsy specimen.
In addition, we applied an external and independ-

ent validation method for the validation set by evalu-
ating the correlation between the human K7 score
and the K7-AI model’s result that showed K7%area.
The protocol in Table 2 was applied in the human
analysis of K7-positive hepatocytes. In Pearson’s
product moment correlation, the ln (K7%area) versus
the human K7 score was 0.92 (p-value < 2.2e-16). In
Spearman’s rank correlation, the result was 0.929 (p-
value < 2.2e-16).

Correlation of K7-AI model results with human K7 score
in the whole PSC cohort (210 WSIs)
To be able to compare the human K7 score with
K7%area and evaluate their correlation, we also applied
the K7 AI Model to calculate the number of K7-positive
hepatocytes and their distribution in each specimen. The
normal length of portal sinusoids in human liver is 447–
721 μm [26]. Zone 1, which is the periportal area, is the
third of the length of the portal sinusoids [26]. Figure 4
illustrates the absolute distance (A) (μm) and mean
distance (B) (μm) of K7-positive hepatocytes from the
closest portal area. The majority of the K7-positive hepa-
tocytes are located in zone 1. Spearman’s rank correl-
ation between the K7%area and the mean distance (μm)
of K7-positive hepatocytes from the nearest portal area
was 0.44 (p-value < 6.4e-11).
Because the human K7 score is a categorical variable,

we also calculated the distribution of the K7-positive he-
patocytes in relation to human K7 score (0–3) (Fig. 5).
The more cholestasis and K7-positive hepatocytes, the
further the K7-positive hepatocytes are located from the
closest portal area.
The K7-AI model’s percentage of K7-positive hepato-

cytes in the liver parenchyma (K7%area) correlated well
with the human K7 score (Fig. 6). Pearson’s product mo-
ment correlation between K7%area and the human K7

Fig. 4 a The distribution of K7-positive hepatocytes in length (μm) from the closest portal area b The mean distance (μm) of K7-positive
hepatocytes of the closest portal area (both in the entire material of 210 slides)

Sjöblom et al. Diagnostic Pathology           (2021) 16:41 Page 7 of 12



Fig. 5 a-c The human estimate of the K7-positive hepatocytes (human K7 score) binned into three categories (0–3) according to the Nakanuma
classification [19] in relation to the distribution of K7-positive hepatocytes measured by the K7-AI Model. a Number of K7-positive hepatocytes
and their distribution within the categories of human K7 score (0–3) estimated by a human pathologist. b Mean distance (μm) of the K7-positive
hepatocytes from their closest portal area and their distribution within the categories of human K7 score. c Percentage of area of K7-positive
hepatocytes (K7%area) in each specimen distributed within the categories of human K7 score

Fig. 6 The K7-AI model’s results (K7%area) vs the human estimate of K7-positive hepatocytes (human K7 score), and the logarithm of the K7-AI
model’s results versus serum ln (ALP) values
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score was 0.615 (p < 2.2e-16). The correlation between
the ln (K7%area) and the human K7 score was 0.907
(p < 2.2e-16) which indicates a very strong correlation.
Spearman’s correlation was 0.897 (p < 2.2e-16), also very
strong.

Correlation of K7 load in liver tissue with biochemical
parameters
For overall results see summary in Table 4. For correla-
tions of P-ALP (U/l) (n = 112) and K7-AI-model
K7%area see Fig. 6. The Pearson correlation of log-
transformed variables was weak but statistically highly
significant (0.348, p < 0.000171). The Spearman correl-
ation of the P-ALP levels with the K7%area was 0.359
(p < 1.001e-5).
The P-ALP and ln(P-ALP) correlations with the human

K7 score were 0.321 (p < 5.9e-4) and 0.394 (p < 1.855e-05)
in Pearson’s correlation and 0.405 (p < 1.028e-05) in
Spearman’s correlation.
P-GT, U/l failed to correlate with K7%area, but a weak

correlation was detectable between non-conjugated
bilirubin (Bil, μmol/l) and K7%area. The correlation
between ln (Bil) and ln (K7%area) was 0.273 (p = 0.009)
in Pearson’s product moment-correlation analysis,
whereas the correlation between K7%area and ln (Bil)
was 0.264 (p = 0.012).
Weak correlations were observable between In (K7%area)

and plasma transaminase levels, In (P-ALT) and ln (P-AST)
(each 0.323; p < 7.2e-4).

Stage of fibrosis correlates with K7 load in the liver tissue
The correlation between ln (K7%area) and stage of fibro-
sis (Metavir) was significant (Table 4) when using the
Pearson correlation, 0.437 (p < 5.083 e-10), a correlation
that was strong regardless of whether the calculation
was by Metavir or Nakanuma stage. Spearman rank
correlation between Metavir stage and human K7 score
was 0. 367 (p < 3.122e-07).
Stage of fibrosis (Metavir or Nakanuma) and plasma ln

(ALP) levels correlated rather weakly, although signifi-
cantly. Pearson’s correlations for ln (ALP) and Metavir

score and Nakanuma score were 0.204 (p = 0.006) and
0.216 (p = 0.023).

Conclusions
Our 210 PSC patients with K7-immuno-stained histo-
logical liver samples served as a cohort exemplifying
chronic cholestatic liver disease.
In partial validation of the K7-AI model, we found that

K7%area correlated both with fibrosis stage demonstrat-
ing disease stage, and with the biochemical markers of
chronic cholestasis, such as plasma ALP levels. Import-
antly, K7-AI results showed a very strong correlation
with the human K7 score based on the K7 estimate of
an independent liver pathologist.
Within this PSC cohort, we found a robust correlation

between the K7-AI model and human K7 score. This
provides evidence that the K7-AI model is not inferior
to a human pathologist (at least in our study cohort),
thus validating the analytical performance of the K7-AI
model. As the most significant result, this focuses atten-
tion on the confidence and sensitivity that AI models offer
in image analysis. Having said this, it is crucial to acknow-
ledge that without a properly conducted validation proto-
col, this type of technology shows no true value in clinical
practice. We therefore used several validation approaches
(human score, stage, and biochemistry).
One of the major advantages of this kind of novel

technology is speed of analysis. As we verified in our
validation set, the time needed to run the inference of
the final K7-AI model, including the three independent
CNNs, was—for each K7-stained liver biopsy speci-
men—less than 10 s. Moreover, the automated analysis
is not only fast, but it also produces detailed, consistent,
and quantitative data that can easily be confirmed
visually in the digital liver specimen images on the
Aiforia® cloud platform. Supportive data has already
emerged as to the high performance of this type of
AI technology [13, 14].
The human K7 score has critical limitations; it is only

an estimate of the K7 content binned into four categor-
ies (0–3). This score can vary among differing categories
at different times (intra-observer variation), in addition

Table 4 The K7-AI model’s results (K7%area) and their correlations with biochemical examinations indicating cholestasis, and the K7-
AI model results (K7%area and ln (K7%area)) in correlation with stage of fibrosis, according to Metavir and Nakanuma classifications

Laboratory parameter (plasma tests): Pearson K7%area (p-value) Spearman K7%area (p-value) Pearson ln (K7%area) (p-value)

ln (ALP) (alkaline phosphatase) (U/l) 0.290 (p = 0.002) 0.359 (p < 1.001–05) 0.348 (p = 1.71e-4)

ln (GT) (gamma-glutanyl transpeptidase) (U/l) 0.275 (p = 0.275) 0.204 (p = 0.112) 0.216 (p = 0.092)

ln (Bil) (non-conjugated bilirubin) (μmol/l) 0.264 (p = 0.012) 0.253 (p = 0.016) 0.273 (p = 0.009)

Fibrosis stage: Pearson-correlation
K7%area; p-value

Spearman-correlation
K7%area; p-value

Pearson-correlation ln
(K7%area); p-value

Nakanuma score (0–3) 0.289; p < 3.7e-4 0.467; p < 4.004e-12 0.457; p < 1.267e-11

Metavir score (0–4) 0.242; p < 9.1e-4 0.441; p < 3.438e-10 0.437; p < 5.083e-10
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to interobserver variation when several pathologists
analyze the same specimen [10]. In contrast, the K7-AI
model data is continuous, and automated WSI analysis
provides quantitative and repeatable analysis of K7
histology.
As one limitation, this particular AI model to assess

chronic cholestasis in a liver biopsy was built by a single
pathologist; therefore, conclusions depend on a single
interpretation of a histological image. When morpho-
logical alterations in the image material occur, it might
lead to the pathologist’s misinterpretation of histological
findings, and furthermore, alterations to the ground
truth. If the ground truth is changed during the training
process, the AI model will struggle to follow the rules
and learn the trained features accordingly. To train an
AI model with combined input of several professionals
is possible, but sustaining the same accuracy and ground
truth among such professionals may be too ambitious.
However, the same limitation is inherent in routine clin-
ical pathology.
The more pre-analytical variation there is in the input

data, the more training the AI model requires to learn
the feature space in the training data. In practice, if the
histological slides do not undergo high-standard prepar-
ation or their staining intensity is unequal among the
slides due to specimens’ age differences it will lead to
undesirable variation in the training material. Same vari-
ation can occur if the scanning process is performed
with differing equipment or optical optimization settings
are overlooked [27]. Cholestasis can have influence on
the cell morphology of hepatocytes producing additional
variation. Due to the aforementioned variation in the
image material, the AI model might require more train-
ing annotations and more examples to learn the desired
features in the images.
The K7 stain in PSC liver biopsies was a marker of

chronic cholestasis and a suitable surrogate end-point
marker of disease progression, given its correlation with
the clinical marker of cholestasis (P-ALP). Furthermore,
this correlation was sustained, independent of the ana-
lyst–either a pathologist or our AI model. P-ALP correl-
ation with human K7 score was slightly stronger
compared to its correlation with K7-AI analysis, al-
though both correlations were weak. Nevertheless, that
the correlations were derived by independent methods
provides clear evidence of a true dependence between P-
ALP levels and K7-positive cholestatic hepatocytes.
For PSC as a chronic cholestatic liver disease, P-ALP

levels and liver histology both may prove to be surrogate
end-point markers for drug trials [21–23]. Correlations
between cholestatic liver disease histology and its clinical
markers vary to some extent, but it should be noted that
these correlations have undergone study mostly in other
chronic cholestatic liver diseases such as PBC [8]. In

drug development, when analyzing drug trial biopsies,
these kinds of objective tools like AI and analytical in-
struments could prove valuable. In clinical trials object-
ive and consistent quantitative data is required especially
in assessment of treatment response. Overall, the work-
load of pathologists in routine diagnostics is increasing
world-wide, and it is essential to develop new tools to
assist the pathologist and bring aid to the rapid decision
making.
To the best of our knowledge, the correlation between

amount of tissue K7 and stage of chronic cholestatic liver
diseases like PSC has never before been subject to study.
No specific histological classification system for PSC liver
specimens exists thus far, although a few algorithms based
on strictly clinical parameters can predict disease progres-
sion [28]. An international multi-center cohort study [20]
has validated a histological scoring method for PSC liver
biopsy specimens, and the Nakanuma classification show-
ing current amount of fibrosis had the most favorable
prognostic value in predicting PSC disease progression.
We utilized fibrosis stage of PSC determined according to
Nakanuma standards to provide clinically meaningful val-
idation for the K7-AI model. Metavir and Nakanuma fi-
brosis scores showed almost equal correlations with the
proportion of K7 as indicated by the K7-AI model. K7 sta-
tus could therefore be considered as a possible indicator
of PSC disease progression.
Debate has arisen as to whether, for assessment of

continuing cholestasis, K7 immunohistochemical stain-
ing of a histological liver specimen is superior to, for ex-
ample, quantifying its orcein deposits [2, 3]. Here, the
K7 AI model has proven its potential in chronic chole-
stasis assessment in a cohort of PSC liver specimens.
The benefit of applying this PSC cohort for validation of
the AI model is the large number of liver specimens
demonstrating nearly normal histological status and
serving as control samples.
In conclusion, we can recommend K7 staining as part

of routine diagnostics of histological cholestasis, because
its values correlate with clinical parameters of chronic
cholestasis and fibrosis stage. Our results are promising
and encouraging because digital pathology and its appli-
cations, such as our AI model, are partly replacing the
traditional diagnostic methods in the future [29]. How-
ever, the visual validation of a human pathologist will re-
main the gold standard of diagnostics. The prospect of
our AI model is promising as an objective tool for rapid
digital image analysis and in the future, we aim to inves-
tigate its potential as a prognostic tool within our PSC
cohort. In addition, further validation with a wider inter-
national cohort would be beneficial.
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