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Abstract

Background: Histological images show strong variance (e.g. illumination, color, staining quality) due to differences in
image acquisition, tissue processing, staining, etc. This can impede downstream image analysis such as staining
intensity evaluation or classification. Methods to reduce these variances are called image normalization techniques.

Methods: In this paper, we investigate the potential of CycleGAN (cycle consistent Generative Adversarial Network)
for color normalization in hematoxylin-eosin stained histological images using daily clinical data with consideration of
the variability of internal staining protocol variations. The network consists of a generator network Gg that learns to
map an image X from a source domain A to a target domain B, i.e. Gg : X4 — Xg. In addition, a discriminator network
Dg is trained to distinguish whether an image from domain B is real or generated. The same process is applied to
another generator-discriminator pair (G, Da), for the inverse mapping Gy : Xg — X4. Cycle consistency ensures that a
generated image is close to its original when being mapped backwards (G4(Gg(X4)) & X4 and vice versa). We validate
the CycleGAN approach on a breast cancer challenge and a follicular thyroid carcinoma data set for various stain
variations. We evaluate the quality of the generated images compared to the original images using similarity
measures. In addition, we apply stain normalization on pathological lymph node data from our institute and test the
gain from normalization on a ResNet classifier pre-trained on the Camelyon16 data set.

Results: Qualitative results of the images generated by our network are compared to original color distributions. Our
evaluation indicates that by mapping images to a target domain, the similarity training images from that domain
improves up to 96%. We also achieve a high cycle consistency for the generator networks by obtaining similarity
indices greater than 0.9. When applying the CycleGAN normalization to HE-stain images from our institute the
kappa-value of the ResNet-model that is only trained on Camelyon16 data is increased more than 50%.

Conclusions: CycleGANs have proven to efficiently normalize HE-stained images. The approach compensates for
deviations resulting from image acquisition (e.g. different scanning devices) as well as from tissue staining (e.q.
different staining protocols), and thus overcomes the staining variations in images from various institutions.
(Continued on next page)
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The code is publicly available at https://github.com/m4in/stainTransfer_CycleGAN_pytorch. The data set supporting
the solutions is available at https://doi.org/10.11588/data/8LKEZF.
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Background

In both histology and surgical pathology, the inherent
individual appearance of the considered object on the one
hand or the different staining protocols on the other hand
must be compensated in addition to factors that influ-
ence the image acquisition (e.g scanning devices). This
demand applies to hematoxylin-eosin (HE) staining being
the standard method in pathology but also to all other his-
tochemical and immunohistochemical staining. Regard-
ing HE-staining, solutions and protocols are standardized
at first glance. However, even within a single institution,
protocols may vary slightly and may not be coordinated
with other institutes. Especially when training deep neu-
ral networks, for example for image classification, there is
a need for stain normalization of images so that models
are transferable to other data sets.

The term color normalization is an umbrella term for
image processing techniques compensating for effects
such as variable illumination, camera setting, etc. This
evident request drives an active research. Conventional
image processing such as color deconvolution or look-
up tables with the need for selecting a reference template
slide for normalization are widespread [1-6]. A particu-
lar but quite similar issue is stain quantification [7, 8].
Recent publications investigated in the use of deep learn-
ing approaches with Generative Adversarial Networks
(GANSs) and showed the benefits compared to the conven-
tional methods [9, 10]. It was also shown how normalizing
images using GANs can highly improve results of image
classification [11] or segmentation [12]. Mahapatra et al.
[13] integrate self-supervised semantic information such
as geometric and structural patterns at different layers to
improve stain normalization with CycleGANS.

In this work, we investigate the potential and limitation
of a machine learning-based approach for normalization
with a cycle consistent Generative Adversarial Network
(CycleGAN) which learns the mapping from one HE-stain
variant to an other. The approach we follow was proposed
by Zhu et al. [14]. An image-to-image mapping is learned
between two different HE-stained data sets to generate
fake images in each image domain. We apply the tech-
nique to two independent data sets: the Mitosis-Atypia-14
challenge which provides two image sets of breast can-
cer tissue scanned with two different devices, and our
HE-Staining Variation (HEV) data set, showing follicular

thyroid carcinoma slices stained with different protocols.
We evaluate the results using the Fréchet Inception Dis-
tance (FID) and the Structural Similarity Index Measure
(SSIM). In addition, we apply our method to a tumor clas-
sification task of lymph node samples, in which we apply
stain normalization on pathological lymph node data from
our institute and test the gain from normalization on a
ResNet classifier pre-trained on the Camelyon16 data set.
We show that normalization can increase the confidence
of the classifier not only prior to the training, but also
when the test data is normalized on the training set and
applied to the model after training. In addition to that, we
demonstrate the potential of using this normalization for
recoloring images with stains that are not present in the
original data; and at the same time we achieve a higher
accuracy in our classification task.

We provide both, our implementation at https://
github.com/m4ln/stainTransfer CycleGAN_pytorch, and
our data set for normalization and classification at https://
doi.org/10.11588/data/8LKEZF.

Methods
CycleGAN formulation
The CycleGAN from Zhu et al. [14] consists of two gen-
erator and discriminator pairs each of which learns the
mapping from one image domain to the other. Given the
image domains A and B with training images X4 and X3,
the generator Gp learns the mapping from A to B such that
Gp : X4 — Xp, while the generator G4 learns the mapping
in reverse direction, i.e. G4 : Xg — X4. A discriminator
D is a binary classifier. It decides whether a sample is real
(1), i.e. given from the training data set, or fake (0), i.e. pro-
duced by the generator. More precisely, discriminator Dg
learns to distinguish between real images X]_’;“l and gen-
erated ones Xj;a ke, while in the same way, D4 is trained to
discriminate between X ;f“l and XJ: ke,

For training, the objective function to be optimized is
modeled by two loss functions: the adversarial loss £
[15] and the cycle consistency loss £9¢ [14].

Adversarial loss

Introduced by Goodfellow et al. [15] the adversarial loss
refers to the two-player game between the generator and
the discriminator networks. More precisely, for the map-
ping Gg : X4 — Xp, the discriminator Dp is trained
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to classify Xge“l and XJ;“ ke

seeks XJ: ke being classified as real by the discriminator. In
this way, both, the generator and the discriminator try to
fool the other. Zhu et al. [14] use the least-squares loss
as objective since it ensures stability during training and
generates higher quality results. Thus, the adversarial loss
function is expressed as follows [14]:

Exgeal |:DB (Xgealfil
+ By (0 (6 () 1)),

with E being the expected value over all instances of X’ :f“l

correctly, while the generator

min max Ead" =
Gg Dg

and Xge“l . In the same way, we can formulate the adversar-
ial loss for the inverse mapping function G4 : Xg — Xy,
ie.

min max E“d" = ]EXreal |:DA (X’ e“l) j|

Ga Da
+ Expea |:<DA (GA (X]’;ﬂl» _ 1)2:| ’

Thus, the total adversarial loss £%?" is obtained by the sum
of both terms £ﬁd" and Egd".

Cycle consistency loss

Zhu et al. [14] presented this loss function to enforce that
both mapping functions G4 and Gp learned by the gener-
ators are inverse functions. In other words, if an image is
mapped from one domain to the other domain the back-
ward mapping should bring the image back to its original
state. Thus, it must satisfy the cycle X’ /’f"l — Gp(X :f“l) —
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GA(GB(X:f“l)) = X = X;f“l and in the same way
for X5 — GaXgY) — Gp(GaXF™) = Xp¢ ~
X g‘“’l for the backward mapping. Therefore, the total cycle
consistency is given by:

e - sl (o)
£y
g o o () )
£y
where || - |1 denotes the £1-Norm.

Hence, the total loss function is

argmin argmax £ = L% 4 ALY,

Gp,Ga  Dp,Dy

with A being a regularization factor to control the rela-
tive importance of both, adversarial and cycle consistency
losses.

Figure 1 illustrates the CycleGAN structure for mapping
an image from domain A to domain B by Gp : X:f“l —

Xf;a ke and backwards by G4 : ng ke X', The discrim-

inator Dp tries to identify if an image is generated X{? ke
or real X% During training, the network is optimized by
computing the adversarial loss £%% and the cycle consis-
tency loss LY. The same process is done for the reverse
direction when a real sample image Xj eal js mapped from

1 GA fake Gp Xrec

domain B to domain 4, i.e Xg* —

Gp
/)

LY

Dp
/)

d
......... »C%’U
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Fig. 1 lllustration of the applied CycleGAN architecture for mapping images from domain A to domain B.
A real sample image Xf"/ is mapped to domain B by the generator Gg : X/’\ea/ — Xg”ke and then back to domain A by the generator Gy : Xg"ke — XiC

The discriminator Dg differentiates between the generated image X;“ke and a real sample image ng"’. The same process is done for the reverse

. . . . . . . G G . . .
direction when mapping a real sample image XE’;’”/ from domain B to domain A and backwards, i.e Xz —> X/Zake = Xg¢. During training, the loss is
computed by the adversarial loss £79 and the cycle consistency loss £
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Data sets

Two data sets are used to asses the quality of stain normal-
ization using CycleGAN: (a) The Mitos-Atypia-14 chal-
lenge data set in which the HE-stain in images appears
different in color and resolution due to different scanning
devices. (b) Our clinical HE-Staining Variation (HEV)
data set, which contains images of serial sections that were
subjected to different staining protocols. In addition, we
apply our CycleGAN normalization method in a tumor
lymph node classification task trained on the Camelyon16
data set [16] and tested on the TumorLymphnode data set
collected at our institute.

Mitos-Atypia-14

This is a publicly available challenge data set contain-
ing breast-cancer images [17]. The tissue was HE-stained
and scanned by two different whole-slide image (WSI)
scanners: the Aperio ScanScope XT and the Hamamatsu
Nanozoomer 2.0-HT. Both devices scan images with dif-
ferent resolutions, the Aperio 1539 x 1376 pixels and the
Hamamatsu 1663 x 1485 pixels at X20 and X40 magnifi-
cation. From each scanned set, 7,936 tiles are selected for
training and 15,000 tiles for testing. We resize the images
to 1024 x 1024 pixels and extract image tiles of 256 x 256
pixels as input to our network.

HE-Staining variation

At the Institute of Pathology, Medical Faculty Mannheim,
Heidelberg University we collected serial sections of a
follicular thyroid carcinoma and stained them with the
following HE-staining variants: standard protocol (of the
Institute of Pathology, Mannheim) HE-stain (henceforth
HE), intentionally stained too short (henceforth shortHE),
intentionally stained too long (henceforth longHE), only
stained with hematoxylin (henceforth onlyH), and only
stained with Eosin (henceforth onlyE). Figure 2 shows
thumbnails from each WSI. For each set, we extract tiles
of 256 x 256 pixels. We collect 10,000 and 15,000 tiles
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for training and testing, respectively. The whole data set
including our training patches is made publicly available
[18].

Image classification

The effect of HE-staining normalization is applied on
a tumor classification task using two sets of data: (1)
The Camelyon16 data set [16] containing the classes nor-
mal lymph node (n = 3,318) and carcinoma infiltration
(n = 3,591), (2) Slides with normal lymph nodes and
carcinoma infiltration from an interval of 15a (hereinafter
called TumorLymphnode or short TL data set) collected
from the Institute of Pathology, Heidelberg University.
These are segmented manually and then cropped into tiles
(n = 3605 with normal lymph node parts, n = 3, 600 with
carcinoma infiltration).

Training details

CycleGAN

In the first setting, we train our model on the Mitos-
Atypia-14 challenge to learn the mapping between the two
image sets X4 and Xp obtained by the scanners Aperio and
Hamamatsu, respectively. We then train four additional
models on the HEV data set, with set A being the stan-
dard stained tissue (see Fig. 2 A) and set B being one of
the other stained tissues (see Fig. 2 B-E). For each model
we choose 10,000 images for training. An overview of
the experiments on stain normalization are given in the
Appendix.

For the classification task, we train a CycleGAN to nor-
malize the Camelyon16 data set to the standard HE and
hematoxylin staining of the HEV data set and to the TL
data set. In the same way we train another model to nor-
malize the TL data set to the Cameylon16 data set and to
the HE and hematoxylin staining of the HEV data set. For
each image set we choose 5,000 images for training.

For all models we use the same network architecture as
described by Zhu et al. [14]. We train each network for 60

Fig. 2 Exemplary miniature image of the WSI that forms the HEV data set.

Serial tissue sections from a thyroid tissue with a follicular carcinoma with HE-staining. For every slide the staining protocol is intentionally modified:
A) Standard protocol at the Institute of Pathology, Medical Faculty Mannheim, Heidelberg University (HE) B) Shortened staining time (shortHE) C)
Prolonged staining time (longHE) D) Only hematoxylin-stain (onlyH) E) Only eosin-stain (onlyE)
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epochs in total where the initial learning-rate is set to 2e~*
and then decreases to zero after every 30 epochs. The reg-
ularization factor X is set to 10 for all experiments. Adam
optimizer is used (81 = 0.5,82 = 0.999) with a batch
size of 1. We train and evaluate the models on an NVIDIA
Quadro P6000 graphics card.

ResNet

A ResNet [19] - in its Pytorch-implementation - is trained
on the original Camelyonl6 data set and its normalized
versions to the HEV and TL data sets (using CycleGAN),
to classify images into the two classes normal lymph node
and carcinoma infiltration. Each network is trained for
100 epochs in total with a learning-rate of 2e™*.

Evaluation metrics

To assess the quality of the images generated by the
CycleGAN we use the Fréchet Inception Distance (FID),
to compare the distribution of generated images with
the distribution of real images. In addition, the success-
ful training of both generators is assessed by computing
the Structural Similarity Index Measure (SSIM) in vari-
ous windows between a real image and its reconstruction
through the generator. For the classification task, we cal-
culate kappa-values from the confusion matrix.

FID

This metric consists of the Fréchet distance also known as
Wasserstein-2 distance computed on the basis of feature
vectors. Here, a feature vector is the 2048-sized output of a
pre-trained inception v3 model applied on one image. For
the whole set of input images we get a sample of feature
vectors with m17 as its collective mean and C; as its covari-
ance while for the GAN output images we get my, Co
respectively [20]. The Fréchet distance is then applied to
calculate the minimum distance between the means and
covariances [21]:

d* ((m1, C1), (ma, Ca)) = ||my — ma||?

T Tr (c1 1C -2 Cl*Cg) .

For identical image sets the FID is zero, whereas it
increases with noise and disturbances. The python code
for computing FID scores is used from [22].

SSIM

For a given original image x and the corresponding out-
put of the GAN y the features luminance /(x, y), contrast
c(x,y) and structure s(x,y) are compared on basis of the
respective average, variance and covariance. The product
of these components with the weighting factors «, 8, y
yields the SSIM:

SSIM(x,y) = [l P]* - [cco ]’ - [sap]”
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The SSIM metric is applied on image pairs showing the
same image content. It ranges from 0 to 1 and equals one
only for exact identical images. An SSIM close to zero
hardly represents similar images [23]. We use the python
code from [24] to compute SSIM scores.

Cohen’s kappa

The kappa-values are calculated from the confusion
matrix using scikit-learn’s function cohen_kappa_score
[25]. The kappa score ranges from -1 and 1. A value >
0.8 is considered as almost perfect agreement while < 0
means no agreement (i.e. random labels) [26].

Results

We show the visual and evaluation results of our Cycle-
GAN experiments on the Mitos-Atypia-14 and HEV data
sets. For generators G4 and Gp, image tiles from image
domains A and B can be normalized in both directions
such that x7eal G5 xdake  Ga - yiee nnq xpeal A

ke G ..
X{f ¢ 25 Xz, In addition, we show the results of our

experiments on the lymph node classification task with
HE-stain normalization.

CycleGAN visual results

Mitos-Atypia-14

Example results of on the Mitos-Atypia-14 data set are
shown in Fig. 3. Columns A-C refer to the image tiles
scanned by the Aperio scanner (X;f“l) being mapped by
the generator Gp to produce the corresponding image
in the domain of the Hamamatsu scanner (Xj;” ke) and
the reconstruction from mapping the image back to its
original domain (X’f°). The same process is done in the
reverse direction for image tiles scanned in domain B
being mapped to domain A and backward (columns D-F).
Each row 1-4 presents another example image.

HE-Staining variation
Figure 4 presents several test results when mapping a stan-
dard stained HE-image lef“l to one of the four stains

of domain X{; *_Each block A-D shows another exam-
ple tissue section. The top row of each block represents
an exemplary image tile of the stain to be mapped into
(shortHE, longHE, onlyH, onlyE), while the bottom row
depicts the input image (HE) and the corresponding out-
put for each stain.

CycleGAN evaluation

For all five experiments FID scores are shown in Fig. 5 A.
As reference, FID scores of all testing images from data
sets A and B (blue) are computed. They range between
31.5 (MA14) to 203.68 (onlyE). Our experiments achieve
on average FID scores for real vs. fake of 7.09 (A) and 6.93
(B), while for real vs. rec we obtain an average of 5.76 (A)


https://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen_kappa_score.html
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G A
X Zeal > X éake > Xj:lec

Fig. 3 Results gallery from our experiments on the Mitos-Atypia-14 challenge data set. Columns A-C refer to the image tiles scanned by the Aperio
scanner (X/ge"’) being mapped by the generator Gg to produce the corresponding image in the domain of the Hamamatsu scanner (Xg’ke) and the

) ) ) ) ) ) G G ) )
reconstruction from mapping the image back to its source domain (X5), i.e X/ge"/ = Xgake 24 X The same process is done in the reverse

L : ) ) o G G ) )
direction for image tiles scanned in domain B, i.e X[f“’ 2A XAf"ke = Xt’f‘ (column D-F). Each row 1-4 presents another example tissue section

and 5.58 (B). When mapping images from a source domain  (longHE), 95.76% (onlyH), 95.57% (onlyE). A table with all
to a target domain, the FID scores compared to original  FID is presented in the Appendix.

images from the target domain improve up to 96% (blue In addition, SSIM scores (see Fig. 5 B) are computed
vs. orange, red, green and purple). More precisely, for each ~ between the real and their reconstructed images for each
experiment it is 76.85% (MA14), 91.93% (shortHE), 89.23%  image domain A (blue) and B (orange). Each value refers to

shortHE  longHE onlyH onlyE shortHE  longHE onlyH onlyE

shortHE  longHE onlyH onIyE

Stain - = W WS
e gl TN,
g WRSRN
Input %_ "%\“’4‘

o2
Fig. 4 Results gallery from our experiments on the HEV data set for the mapping Gg :X/f“ — Xg"kf. Here, the input image is from domain A of the
standard stained tissue (HE) being mapped to domain B corresponding to the image-sets shortHE, longHE, onlyH, onlyE. Each block A-D shows

another example tissue section. The top row of each block represents an exemplary image tile of the stain to be mapped into, while the bottom row
depicts the input image and the corresponding output for each stain
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Fig. 5 Evaluation of our experiments using FID and SSIM scores.

SSIM scores is presented in the Appendix

A) FID scores between real and generated (fake, rec) images. For identical images the FID is zero, whereas it increases with noise and disturbances.
B) SSIM scores between real vs. rec images. The SSIM scale ranges from 0 to 1 and is close to zero for hardly similar images. A table with all FID and

T
| -

0.94

SSIM

MA14 shortHE longHE onlyH onlyE

Experiment

the average SSIM for all test images and the bars represent
the corresponding standard deviation (SD). For each set A
we obtain SSIM scores in the range of SSIM = 0.94 (SD =
0.02) (MAI14) and SSIM = 0.97 (SD = 0.01) (onlyH),
whereas for set B we obtain scores between SSIM =
0.96 (SD = 0.02) (MA14) and SSIM = 0.98 (SD = 0.01)
(onlyH). A table with all SSIM scores is presented in the
Appendix.

Stain normalization in image classification

In order to sow the impact of stain normalization on a
downstream task such as image classification or segmen-
tation, a ResNet [19] for the Camelyon16 data set, and its
normalized versions, was trained. It should be noted that
a standard color normalization to the mean and standard
deviation as well as data augmentation with the albu-
mentations package [27] is carried out in the standard
training setting. The model learns to classify the images
in lymph node parts with (hereinafter called tumor) and

without (hereinafter called normal) carcinoma infiltra-
tion. Our three ResNets are tested on the Camelyonl6
data set (n = 830 images without and » = 898 images
with tumor) in original, normalized to the HEV data set
and normalized to the TL data set as well as to the TL
data set (n = 902 images without and # = 900 images
with tumor) in original, normalized to the HEV data set
and normalized to the Camelyonl6 data set. As shown
in Table 1 all ResNet models work best with images of
the same HE-staining from the same training data set
(Camelyon16 original, normalized to the HEV or TL data
set). Furthermore, the models can best be applied to or
transferred to the images from the TL data set, which in
turn have the same HE-staining or stain normalization.
However, with a best kappa-values of 0.55, this transfer
from the Camelyonl16 data set to the TumorLymphnode
data set does not work very well. Also the ResNet-model
trained on hematoxylin normalized images is able to
classify other hematoxylin images correctly (kappa-value

Table 1 Kappa-values for the ResNet models that were trained on different versions of the Camelyon16 data set

model / data Cam_ori Cam_HE Cam_TL TL_ori TL_HE TL_Cam
ResNet_ori 0.85 0.00 0.12 0.00 0.00 0.54
ResNet_HE 0.02 0.79 0.28 0.13 0.55 0.01
ResNet_TL 0.36 0.10 0.79 0.55 0.08 0.24

The training images (from the Camelyon16 data set) are 1) original (Cam_ori), 2) normalized by the CycleGAN to the HEV data set (Cam_HE) or 3) the TL data set (Cam_TL),
respectively. For each training sets, a ResNet model was trained: 1) ResNet_ori, 2) ResNet_HE and 3) ResNet_TL. All models were tested on images from the Camelyon16 data
set (n = 1728 images) and the TL data set (n = 1802 images). There were again three versions of both test data sets: one original version (Cam_ori and TL_ori), one version
normalized to the HEV data set (Cam_HE and TL_HE), and one version normalized to the Camelyon16 (TL_Cam) or the TL data set (Cam_TL). The best kappa value obtained

for each test set (column-wise) on all models is shown in bold
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0.77 for the Camelyonl6 data set and 0.54 for the TL
data set). The complete table of the results is shown in
the Appendix.

Discussion

This paper underlines that CycleGANs for image normal-
ization in the context of digital pathology [12] yield a
clear clinical benefit. The trained CycleGAN models show
compelling results, both visually (Figs. 3 and 4) and quan-
titatively (Fig. 5) by obtaining FID scores up to 96% better
for images mapped to a target domain. The trained models
are able to fully convert to the desired color scheme while
preserving the structural contents of the original image
due to the cycle consistency constraint leading to SSIM
scores greater than 0.9 when mapping generated images
back to their source domain.

Furthermore, we could confirm that this normaliza-
tion approach can be beneficial for image classification
tasks. Similar to the results of Shaban et al. [10] for the
Camelyonl6 data set, Yuan et al. [28] for a number of
publicly available data sets or de Bel et al. [12] in the
application of image segmentation. Compared to earlier
approaches on public data sets, in our work we demon-
strate how stain normalization improves the classification
accuracy, when applied to multiple internal data on a pre-
trained model. When normalizing HE-stain images from
our institute to the Camelyonl6 data set and testing a
ResNet-model that is only trained on Camelyonl6 data
the kappa-value increased more than 50%. Furthermore,
we were able to show in a first approach that such a nor-
malization could also enable the use of different colored
data sets for downstream tasks, e.g. by converting both
data sets to a different staining. However, further work,
e.g using more different staining methods, is certainly
necessary here.

Some limitations of the used CycleGAN-model can also
be seen when mapping images obtained by different scan-
ning devices with varying resolutions. This can cause
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good quality of the color normalization. With the HEV
data set, the generated images look very realistic com-
pared to the original images in a target domain without
any decline in the image content (see Fig. 4).

The CycleGAN approach used here is able to success-
fully learn every mapping between two image stains and
can instantly normalize any unseen image if it is within
one of the trained stains. For each other staining, the
network needs to be retrained from scratch. However,
the network is able to learn even from a small amount
of images (1,000-10,000 per set) which can be obtained
from a single WSI. In addition, the images do not have
to be labeled or paired to learn the mapping between two
domains. The network can learn to add a stain to images
which is not present in the source domain, e.g we are able
to create a full HE-stained image from an image which
has only a single stain (onlyH, onlyE) or vice versa. This
can simplify the manual staining process. How this affects
other stains besides HE needs further investigation.

Conclusion

In this paper we show that CycleGANs are a powerful
tool for normalization of different variants of HE-stains
and tissue types. We validated this approach on data sets
covering images from different scanning devices, stain-
ing protocols and tissue types and additionally showed the
impact on stain normalization on the downstream task
of image classification. The method has been successfully
applied to compensate for variances resulting from image
acquisition as well as from tissue staining while preserv-
ing structural content of the images. In order to make
use of this approach in a clinical manner, the training
process should be accelerated, i.e. using transfer learn-
ing, an increased batch size and specialized hardware.
The method may be added to various image processing
frameworks at WSI level to be applied to tasks such as
classification or segmentation.

a loss in structural information despite the consistently  Appendix

Table 2 Overview of our stain normalization experiments

Data set Experiment Name SetA SetB

Mistos-Atypia-14 MAT4 Aperio scanner Hamamatsu scanner

HEV shortHE standard HE stained shortened staining time
longHE prolonged staining time
onlyH only stained with hematoxylin
onlyE only stained with eosin

Camelyon16 Cam_HE Camelyon16 standard HE stained
Cam_TL TumorLymphnode

TumorLymphnode TL_HE TumorLymphnode standard HE stained
TL_Cam Camelyon16
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Table 3 FID scores for all experiments between real and generated (fake, rec) images for A and B

FID MA14 shortHE longHE onlyH onlyE
X5l vs, el 31.5017 59.4240 51.4460 119.0061 2036761
xpeal ys, xfake 12.1464 45465 6.0007 41793 85647
X;\E"/ VS, Xf( 4.0544 4.2877 7.8630 4.0363 8.5685
xgeal vs, xfake 103222 40365 53136 7.0321 79218
Xéea’ VS, Xéec 2.6451 63173 2.9931 4.9206 11.0160
Table 4 SSIM scores (SD = standard deviation) for all experiments between real and rec images for A and B

SSIM (SD) MA14 shortHE longHE onlyH onlyE

XA[EG’ VS, Xfc 0.9406 (0.0147) 0.9724 (0.0055) 0.9572 (0.0073) 0.9731 (0.0057) 0.9534 (0.0080)
Xéea/ VS, Xéec 0.9606 (0.0148) 0.9760 (0.0063) 0.9702 (0.0098) 0.9763 (0.0056) 0.9648 (0.0107)

Table 5 Kappa-values for the ResNet models that were trained on different versions of the Camelyon16 data set

model / data Cam_ori Cam_onlyH Cam_TL TL_ori TL_onlyH TL_HE TL_Cam
ResNet_ori 0.85 0.00 0.12 0.00 0.00 0.00 0.54
ResNet_HE 0.02 0.01 0.28 0.13 0.00 0.55 0.01
ResNet_onlyH 0.00 0.77 0.14 0.03 0.53 0.00 0.00
ResNet_TL 0.36 053 0.79 0.55 038 0.08 024

The best kappa value obtained for each test set (column-wise) on all models is shown in bold
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Abbreviations
HE: Hematoxylin-eosin; GAN: Generative adversarial network; FID: Fréchet
inception distance; SSIM: Structural similarity index measure
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