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Abstract

Background: Nuclei classification, segmentation, and detection from pathological images are challenging tasks due
to cellular heterogeneity in the Whole Slide Images (WSI).

Methods: In this work, we propose advanced DCNN models for nuclei classification, segmentation, and detection
tasks. The Densely Connected Neural Network (DCNN) and Densely Connected Recurrent Convolutional Network
(DCRN) models are applied for the nuclei classification tasks. The Recurrent Residual U-Net (R2U-Net) and the
R2UNet-based regression model named the University of Dayton Net (UD-Net) are applied for nuclei segmentation
and detection tasks respectively. The experiments are conducted on publicly available datasets, including Routine
Colon Cancer (RCQ) classification and detection and the Nuclei Segmentation Challenge 2018 datasets for
segmentation tasks. The experimental results were evaluated with a five-fold cross-validation method, and the
average testing results are compared against the existing approaches in terms of precision, recall, Dice Coefficient
(DQ), Mean Squared Error (MSE), F1-score, and overall testing accuracy by calculating pixels and cell-level analysis.

Results: The results demonstrate around 2.6% and 1.7% higher performance in terms of F1-score for nuclei
classification and detection tasks when compared to the recently published DCNN based method. Also, for nuclei
segmentation, the R2U-Net shows around 91.90% average testing accuracy in terms of DC, which is around 1.54%
higher than the U-Net model.

Conclusion: The proposed methods demonstrate robustness with better quantitative and qualitative results in
three different tasks for analyzing the WSI.
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Introduction nuclei classification, segmentation, and detection are
Nowadays, computational pathology has become a very fundamental problems in Digital Pathology (DP),
trendy research area; therefore, this research field gains and prerequisites for various quantitative and qualitative
significant attention from both the research community analyses of different cancers, including routine colon
and people working in clinical practice. Automatic cancer, breast cancer, drug development, and many

more. The automatic nucleus classification, segmenta-
T Conespondence: alommT@udaytonedy tion, and detection syste‘ms can .significantly help unl<?c1<
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TN, USA of the cell's nuclei is the starting point to analyzing
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about 30 trillion cells, each of which contains a nucleus
full of DNA within the human body. Accurate detection
of cells can help the researchers to determine how to
react to a cell for different treatments. As a result, the
researchers can understand the underlying biological
process of cell-level analysis in a clinical workflow. This
solution can help ensure better planning for the treat-
ment of patients, and it can accelerate disease identifica-
tion and drug discovery processes. Therefore,
computational pathology and microscopy images play an
essential role in decision-making for disease diagnosis.
These image analysis methods provide a wide range of
information for computer-aided diagnosis (CAD) and
enable a quantitative and qualitative analysis of images
with a high throughput rate [1-3].

The proposed DL approaches can provide faster and
more efficient image analysis results compared to the
manual system currently used by the researchers and
clinician-scientists. In addition, the system alleviates dif-
ficulty and requires repeated routine efforts [4]. The
pathological images are very challenging to analyze
manually; as a result, it can lead to large inter-observer
variations [5]. On the other hand, CAD reduces the bias
significantly and provides a characterization of diseases
accurately [6]. Additionally, computational pathology
gives a reproducible and rigorous measurement of
pathological image features, which can be used for clin-
ical follow-up. It may also help to study personalized
medicine and treatment, which would significantly bene-
fit patients. As a prerequisite of clinical practice of CAD,
the nuclei classification, segmentation, and detection
methods are considered for annotated image analysis
with different DCNN based methods. These techniques
provide various quantitative studies, including cellular
morphology, size, shape, color, texture, and other image-
nomics. However, these tasks are very challenging to
achieve robust and accurate performance in pathological
imaging for several reasons. First, the pathology and mi-
croscopy images contain background clutter with noise,
artifacts (images are blur sometimes), low signal-to-
noise ratio (SNR), and poor depth resolution. These deg-
radations usually occur during image acquisition. Sec-
ond, pathology images contain low contrast between the
foreground and the background. Third, variations arise
in terms of size, shape, and intercellular intensity of the
nuclei or cell. Fourth, it can be observed very often that
the nuclei of cells are partially overlapped with one
another.

Meanwhile, several methods have been proposed to
tackle these issues with automatic nuclei classification,
segmentation, and detection from pathological images.
In the last few years, several surveys have been con-
ducted, and CAD technologies in the field of biomedical
imaging, including computational pathology, have been
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summarized [7-9]. These reviews briefly discuss differ-
ent techniques related to image pre-processing, nuclei
classification, segmentation, detection, and post-
processing methods. One of the recently published pa-
pers discusses several techniques related to data acquisi-
tion and ground truth image preparation, image analysis,
recognition, detection, segmentation, and survival ana-
lysis [10]. Another review was conducted on different
approaches related to feature extraction, predictive mod-
eling, and visualization in digital pathology applications
[11]. A survey was conducted on nuclei detection, seg-
mentation, and classification of hematoxylin and eosin
(H&E) and immunohistochemistry (IHC) stained histo-
pathology images. Due to the availability of annotated
samples and computing power, the Convolutional
Neural Network (CNN) successfully applied in different
classification, segmentation, and detection problems, and
shown state-of-the-art accuracy [12, 13]. For the classifi-
cation task, the goal is to define the class probability
from the input samples. For example, in binary-class
breast cancer recognition problems, the system defines
whether the input samples are either a benign or malig-
nant class. Second, in most cases, deep CNN-based se-
mantic segmentation techniques are used for nuclei
segmentation, which describes the process of associating
each pixel of an image with a class label and defining the
proper contour of the target region from an input image.
Third, in DCNN based cell detection task, the objectives
are to identify the central or rectangular coordinate of
specific cells and defining of the contour of a nucleus.
However, due to the complex nature of pathological im-
ages, there are still several DL methods under develop-
ment for even better accuracy. In this work, we applied
three different improved DCNN models for nuclei classi-
fication, segmentation, and detection problems and con-
sidered each as an individual task. The overall project
implementation schematic diagram is shown in Fig. 1.
The contributions of this paper are summarized as
follows:

e We proposed an improved model named the
Densely Connected Recurrent Network (DCRN) and
applied it to the nuclei classification task.

e An improved deep learning model called R2U-Net is
applied to nuclei segmentation tasks.

e The R2UNet-based regression model named “UD-
Net” is proposed and used for end-to-end nuclei de-
tection tasks.

The experiments are conducted on three different
publicly available datasets, and the results demon-
strate superior performance compared to existing ma-
chine learning and recently published DL-based
methods.
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Fig. 1 Schematic diagram of the proposed systems: the patches are extracted from the multi-scale slide as required. Three different DL models
are applied for nuclei classification, segmentation, and detection tasks. Finally, the performance is evaluated with different performance metrics

Related works

In the last few years, several DCNN based approaches
have been proposed and successfully applied to patho-
logical image analysis problems and shown superior per-
formance on different benchmark datasets for
classification, segmentation, and detection [13]. In 2009,
the image features, including shape, texture, and size of
nuclei were considered to develop a classical method for
nuclear pleomorphism grading for breast cancer detec-
tion tasks [14]. Malon et al. used a CNN for classifying
mitotic, and non-mitotic cells using features that include
the color, shape, and texture information [15]. The can-
cerous nuclei are classified from lymphocyte or stromal
based on morphological features in H\&E stained for
breast cancer image analysis problem, and a machine
learning method was used to accurately segment tissue
from the input samples [16]. A nuclei segmentation clas-
sification method was proposed using an AdaBoost clas-
sifier where the intensity, morphological, and texture
features were used in [17]. However, recent studies have
shown that the deep learning-based approaches demon-
strate better classification accuracy for large-scale patho-
logical image classification tasks [13]. In 2014, Wang
et al. used hand-crafted features, and a cascaded ensem-
ble CNN was applied for detecting nuclei and mitosis
cells and achieved superior nuclei classification com-
pared to classical machine learning methods [9]. An-
other deep learning-based approach was proposed for
cell classification and was compared against a bag of fea-
tures and canonical representations methods and

achieved little better performance [18]. In 2017, a histo-
pathological image classification approach was proposed
using a support vector machine (SVM), AdaBoost, and
DCNN methods. The experiment was conducted on four
different H&E stained image datasets, namely the pros-
tate, breast, renal clear cell, and renal papillary cancer
cell detection tasks. The results demonstrate that the
color-encoder deep network achieves the best perform-
ance out of nine individual classical methods and shows
around 91.2% testing accuracy in terms of Fl-score that
is the highest testing accuracy to date [18]. For the very
first time, we here introduce the Densely Connected
Network (DCN) [19] and proposed a Densely Connected
Recurrent Networks (DCRN) model for nuclei classifica-
tion tasks.

For the nuclei segmentation task, a novel contour-
based “minimum-model” cell detection and segmenta-
tion approaches were proposed in 2012 where a priori
information was used to detect contours independent of
their shape and achieved promising segmentation results
[20]. The Nuclei membrane segmentation method was
proposed using a CNN model from microscopic images
in 2012 [21]. In 2015, Ronneberger et al. proposed a U-
Net and applied this model for medical image segmenta-
tion tasks and achieved state-of-the-art performance
[22]. A learning-based framework for robust and auto-
matic nuclei segmentation was proposed that shows
proper shape properties of nuclei in pathological images
where a CNN base iterative region merging technique is
applied. In 2016, a novel segmentation approach was
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exploited to separate individual nuclei by combining a
robust selection-based shape sharing and a local repul-
sive deformable model, which were tested in several sce-
narios for pathological image segmentation and showed
state-of-the-art performance against the existing ma-
chine and deep learning approaches [23]. A simple CNN
model-based nuclei segmentation approach was pro-
posed in 2017 named the CNN2 and CNN3 models for
the different number of output classes. For the two-class
model, the network was applied to classify pixels as in-
side or outside of the nuclei regions. On the other hand,
for the three-class problem, the model was used for clas-
sifying pixels as belonging to the inside, outside, or
boundary of nuclei regions [24]. In the same year, D. J.
Ho et al. proposed a fully 3D-CNN method for nuclei
segmentation method from 3D microscopy images [25].
A promising deep learning-based one-step contour
aware nucleus segmentation approach was proposed
with a fully convolutional neural network to segment the
nuclei from corresponding boundaries simultaneously in
2018 [26]. A 3D Convolutional Network was used to
perform cell nuclei detection and segmentation simul-
taneously in microscopic images, and the model was
tested with two different datasets and achieved state-of-
the-art accuracy in detection, and segmentation tasks
[27]. However, for medical image segmentation prob-
lems, an improved version of the U-Net deep learning
model was proposed in 2018, where recurrent residual
modules were incorporated into the U-Net instead of
forwarding convolutional layers. The model was evalu-
ated on different modalities of medical imaging, includ-
ing retinal blood vessel segmentation, skin cancer
segmentation, and lung segmentation tasks, and
achieved superior performance against U-Net, and Seg-
Net [28]. To generalize the R2U-Net model, the R2U-
Net model was applied for end-to-end nuclei segmenta-
tion tasks in 2018 [29]. In this study, a large-scale R2U-
Net model is used for nuclei segmentation tasks on a
larger dataset and achieved better performance.

For the nuclei detection task, two different approaches
were primarily applied for nuclei detection: the first is
detection-based counting, which requires a prior detec-
tion or segmentation in [30]. Another approach is a
density estimation-based method that was used for nu-
clei detection without using segmentation methods in
[31]. A framework with a supervised max-pooling CNN
was trained to detect cell pixel regions using a Support
Vector Machine (SVM) and outperformed against the
hand-crafted feature-based approaches [32]. For nuclei
detection, a stacked sparse autoencoder was used for
non-nuclei and nuclei region detection with unsuper-
vised fusion where a Softmax classifier was employed
[33]. A CNN-based regression model was used for nuclei
detection and counting, where a fully convolutional
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neural regression network model was used to identify
the density map of nuclei from an input image with arbi-
trary size [34]. However, in this study, we propose a new
R2UNet-based regression model for end-to-end nuclei
detection from pathological images. The recurrent con-
volutional operations help the model learn and represent
features better than the feed-forward convolutional op-
erations and the robustness of the R2U-Net model has
been discovered in several studies before [28].

Proposed deep CNN models

Densely connected recurrent convolutional network
(DCRN)

According to the basic structure of Densely Connected
Networks (DCN) in [19], the outputs from the previous
layers are used as the input for the subsequent layers.
This architecture ensures the reuse of the features inside
the model and shows better performance for classifica-
tion tasks [19]. In this implementation, we propose an
improved version of the DCN, the Densely Connected
Recurrent Network (DCRN) model, for nuclei classifica-
tion. The DCRN is the building block of several densely
connected recurrent blocks, and transition blocks are
shown in Fig. 2.

According to the basic mathematical details of Dense-
Net explained in [19], the I™ layer receives all feature
maps (Xg, Xy, X2 "'X;_1) from the previous layers as
input:

x1 = Hy([xo, X1, X2 "X1_1]) (1)

where [Xg, X1,X2 *'X;_1] is a concatenation of features
from the 0, -+ , 1-1 layers, and Hj(-) is a single tensor.
Let’s consider the Hy(-) input sample from the I'* DCRN
block containing 0, -+ , F -1 feature maps as inputs to
the recurrent convolutional layers. The convolutional
layer performs three consecutive operations including
Batch Normalization (BN), followed by a ReLU and a
3 x 3 convolution. The (i,j) is a center pixel of a patch
located in the input sample of the k™ feature named H,,
w(-). Additionally, the output of the network represents
with Hy(t) for the 1™ layer and the k™ feature map at
time step . The output can be expressed as in eq. (2).

Hy(t) = I (¢
w(t) Wk ) *ay (t)
T
+ (Whio) +H (1) + by (2)
Here, H(fl()i’j)(t) and Hf](;’j)(t—l) are the inputs to the
standard convolution layers and the I recurrent convo-
lution layers respectively. The w(fl’k) and w(;,, values are

the weights of the standard convolutional layers and the
recurrent convolutional layers of the 1™ layer and k™ fea-
ture map respectively. The term by ) is the bias. The



Alom et al. Diagnostic Pathology (2022) 17:38

Page 5 of 17

_

Fig. 2 The Densely Connected Recurrent Network model with recurrent, convolutional, and transition blocks

recurrent convolution operations are performed for the
time steps ¢ [35—37]. The pictorial representation of the
recurrent convolution operations for t=2 is shown in
Fig. 3.

In the transition block, 1 x 1 convolutional operations
are performed with BN followed by 2 x 2 average pool-
ing layers. The DenseNet model consists of several dense
blocks with feedforward convolutional layers and transi-
tion blocks, whereas the DCRN model uses the densely
connected recurrent convolutional layers and transition
blocks. The schematic diagram of recurrent convolu-
tional layers is given in Fig. 3. For both DenseNet and
the proposed DCRN models, we used four blocks with
seven layers per block and a growth rate k of 12 in this

)

Fig. 3 Unfolded recurrent convolutional layer for time step t=2

BN + Conv. + RelLU

study. The growth rate defines as a hyperparameter of
DN. If the function H; produces k output feature maps
refer that [ layer has k= (I - 1) + ko input features-maps
where k; is the number of channels in the input image.
The model details for DenseNet and DCRN are shown
in Table 1.

R2U-Net

We applied the R2U-Net model for nuclei segmentation
for microscopic images in our previous study in 2018
[29]. However, we extended the nuclei segmentation
tasks in this study by applying a large-scale R2U-Net
model and achieved better performance. The R2U-Net
model is an improved segmentation model developed
based on U-Net [22], Recurrent Convolutional Neural
Networks (RCNNs) [36], and the Residual Network
(ResNet) [38]. The conceptual diagram of the R2U-Net
model is provided in Fig. 4. The R2U-Net model consists
of two main units that are encoding unit (shown in
green) and the decoding unit (shown in blue). In both
units, the recurrent residual convolutional operations
are performed in the convolution blocks. A pictorial rep-
resentation of the Recurrent Residual Convolutional
Unit (RRCU) is shown in Fig. 5.

The recurrent operations are performed to different
time steps, as shown in Fig. 3 for t = 2, which means one
forward convolution layer followed by two recurrent
layers are used in a convolutional unit. The feature maps
from the encoding unit are concatenated with the fea-
ture maps from decoding units. The Softmax layer is
used at the end of the model to calculate the pixel label
class probability. The network architecture and model
parameters for R2U-Net are given in Table 1.

Regression model with R2U-Net

In general, for cell detection and counting problems, the
ground truth masks are created with a single-pixel anno-
tation method where the individually annotated single-
pixel represents an entire cell. The dataset used in this
study contains at least five to five hundred nuclei anno-
tated manually with the center pixel annotation method.
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Table 1 The model architectures and the number of network parameters utilized for each model

Model Tasks t Network architectures # Parameters (mil.)
DenseNet Classification - Blocks #4, layers#7, and growth rate # 12 1228
DCRN Classification 2 Blocks #4, layers#7, and growth rate # 12 1.228
R2U-Net Segmentation 2 1=> 32-264=>128-2256=>128=> 64-332->1 0.983
UD-Net Detection 3 1=232-264=2128-2256=>128 => 64=332->1 1.038

The annotations are then dilated with a 5 x 5 kernel, and
a Gaussian distribution is generated for the dilated re-
gion. This regression model used the R2U-Net model to
estimate the Gaussian density surface from the input
samples instead of computing the classes directly or
obtaining the pixel-level class probability. As the
R2UNet-based regression model is used for nuclei detec-
tion, we named this model the University of Dayton
Network (UD-Net). For any input sample, a density sur-
face D(x) is generated based on a superposition of these
Gaussians. The objective is to regress a density surface
for the corresponding input image I(x). The target of the
UD-Net model is minimized with the mean squared
error between the predicted density and the target
Gaussian density surface acts as the ultimate loss for the
regression problem. In the testing phase, for a given in-
put cell image I(x), the UD-Net model predicts the
Gaussian density heat map D(x). In prior work, a CNN-
VGG architecture-based regression model was proposed
in 2015 [16, 39-41]. However, in this work, we propose
a UD-Net regression model for nuclei detection tasks
which is more powerful and robust compared to the
existing methods.

Model architectures

We used DenseNet and the DCRN models with similar
architectures and a number of network parameters
(around 1.22 M) for nuclei classification tasks, as shown

in Table 1. The main difference between these two
models is that feed-forward convolutional layers are used
for DenseNet, whereas, for the DCRN model, we used a
recurrent convolutional layer. For segmentation, we used
the R2U-Net model with 0.98 M network parameters
with t =2. In addition, we used the UD-Net model with
time step t =3 that increases the number of network pa-
rameters to 1.038 M, which shows better testing per-
formance. The architecture details of the R2U-Net and
UD-Net regression and the number of network parame-
ters are shown in Table 1.

Experiments and results

To demonstrate the performance of the DCRN, R2U-
Net, and R2U-Net-based regression (UD-Net) models, a
five-fold cross-validation method has been considered
for nuclei classification, segmentation, and detection
tasks. The datasets for nuclei classification and detection
tasks were taken from the recent study in [39], and the
nuclei segmentation dataset was taken from the 2018
Data Science Bowl Grand Challenge dataset [42]. The
average testing accuracies are reported in terms of Area
Under ROC curve (AUC), Dice Coefficient (DC), and
Fl-score. For this implementation, the Keras [43], and
TensorFlow [44] frameworks were used on a single GPU
machine with 56G of RAM and an NVIDIA GEFORCE
GTX-1080 Ti.

Input Image or tile
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Segmentation map
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Fig. 4 The end-to-end R2U-Net architecture where the green part refers to the encoding unit, and the blue part refers to the decoding units
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( ) Dataset for nuclei classification

Outputs This dataset contains 200 annotated samples for clas-
sification and detection tasks, where 100 samples are
used for classification, and the remaining 100 samples
are used for detection. The actual sample size is
500 x 500 pixels. For both classification and detection
tasks, randomly selected 80% of the samples are used
for training, and the remaining 20% of samples are
used for the testing phase. Some of the randomly se-
lected samples for the nuclei classification task are
shown in Fig. 6.

The dataset has four different classes of routine
colon cancer for the classification task, including Epi-
thelial, Fibroblast, Inflammatory, and miscellaneous.
The samples are annotated with respect to the center
pixel of the cell and provided as a MAT file. Each of
the large patches (500 x 500 pixels) contains four dif-

Inputs ferent types of nuclei; however, we have observed that

the large patches do not include all four types of nu-

Fig. 5 The recurrent residual unit (RRU) is used for DCRN, R2U-Net, clei cells in some cases. We have extracted patches
\and UD-Net models with the size of 32 x 32 pixels to the center point of

the cells from the large images. We have cropped
5295 patches for epithelial, 5424 patches for inflam-
matory, 4220 patches for fibroblast, and 1390
patches for miscellaneous. We have a total of 16,329
patches where 80% of samples are used for training,
and the remaining 20% samples are used for

Xy 0

o

Fig. 6 Randomly selected example images from the nuclei classification dataset
. J
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Fig. 7 Randomly selected patches for four different types of nuclei of routine colon cancer

validation as mentioned in [39]. The example nucleus detection and segmentation. The nuclei seg-

patches are shown in Fig. 7. mentation database contains 735 images in total. The
size of the samples is 256 x 256 pixels, where 650 im-
Dataset for nuclei segmentation ages and their corresponding pixel-level annotation

In 2018, the Data Science Bowl launched a competi- masks are released for training, and the remaining 65
tion to create a practical algorithm for automatic —samples for testing, respectively.

Fig. 8 Example input images with segmentation masks: the first row shows input samples and the pixel label annotated masks are shown in the
second row




Alom et al. Diagnostic Pathology (2022) 17:38 Page 9 of 17

Fig. 9 Randomly selected input imagesare shown in the first row and corresponding dilated masks with 3 x 3 kernels are shown on the second
row for nuclei detection tasks

Testing accuracy for nuclei classification tasks

:

o

DenseNet DCRN
Model

DenseNet-Epit. (APS=0.96)
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04
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Fig. 10 Results for nuclei classification model. a Box plot for testing F1-score. b Area under the ROC curve with average AUC and (b) precision-
recall curve with Average Precision Score (AVS) of the DenseNet and DCRN models for nuclei classification tasks
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Table 2 Nuclei classification accuracy and comparison against
other machine learning and deep learning methods

Methods Average F1-score AUC
CRImage [16] 0.488 0.684
Super-pixel descriptor [40] 0.687 0.853
SoftMax CNN + SSPP [39] 0.748 0.893
SoftMax CNN + NEP [39] 0.784 0917
DenseNet [19] 0.794 0.9523
Proposed (DRCN) 0811 09612

However, in this study, from the training set, 80%
of the samples are used for training, and the
remaining 20% are used for validation and testing.
The number of training and testing samples is 536 and 134,
respectively.

This database contains both single and multichannel
images; hence, we have converted all samples to gray-
scale representation. Figure 8 shows the input samples
in the first rows and corresponding ground truth masks
in the second row.

Database for nuclei detection

The nuclei detection database contains 100 samples
and 100 masks with single-pixel annotation [33, 39, 45].
The original size of the database samples is 500 x 500.
Some of the randomly selected samples and corre-
sponding dilated masks are shown in Fig. 9. For nuclei
detection, we extracted the non-overlapping patches
with a size of 96 x 96 pixels from the input samples and
corresponding masks. We used a total of 4392 non-
overlapping patches and maks. Of these patches,
around 80% are used for training, and the remaining
20% are used for testing.

Evaluation metrics
The performance of the models for nuclei cell detection
tasks is evaluated with different performance metrics,
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including precision, recall, and Fl-score, which are
stated in eqgs. (3) through (5). The True Positive (TP) re-
fers to the number of nuclei cells correctly detected with
respect to the ground truth. In contrast, False Positive
(FP) represents the number of detected nuclei not in the
ground truth. The number of ground truth nuclei cells
that are un-detected are called False Negatives (FNs).
The mathematical representation of precision, recall,
and Fl-score are shown in the following expression as
follows:

precision = TP/(TP + FP) (3)
(4)
F1 - score = 2*(recall"precision)/(recall 4 precision)

(5)

recall = TP/(TP + FN)

Training methods

For nuclei classification tasks, the DenseNet and DCRN
are used with similar architecture and a number of net-
work parameters with a five-fold validation approach.
And for training both models, we used a stochastic gra-
dient descent (SGD) optimization method with a learn-
ing rate of 0.001, a weight decay of 1x10-4, a
momentum of 0.9, and cross-entropy loss. The models
are trained for 100 epochs with batch size 32. For the
segmentation task, we applied the Dice Coefficient (DC)
and Means Squared Error (MSE) loss. The DC is
expressed in eq. (6), where GT refers to the ground
truth, and SR refers to the segmentation result.

|GTNSR|

DC=2 ——i——
|GT| + [SR|

(6)

Another metric is used to evaluate the performance of
the segmentation algorithm is the MSE as defined in eq.

(7). In this case, Y represents ground truth and Y repre-

UMAP2
o
umar2

(a)

Labels
* Fibroblast
¢ Miscellaneous
¢ Epithelial
* Inflammatory

(b)

Fig. 11 Unsupervised analysis. a Clustering of deep features extracted with DenseNet. b Clustering of deep features extracted with DRCN
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sents the predicted outputs for an input sample with
height # and width w where n =/ x w.

MSE = % En: (Yi-Y,)* (7)

i=1

We trained a segmentation model with 250 epochs
and used an Adam optimizer with a learning rate of 2 x
10 * and a batch size of 16. Finally, for detection with
the UD-Net regression model, we used the Adam
optimizer with a learning rate of 2 x 10~ * and measured
mean squared error (MSE). The UD-Net model is
trained for 500 epochs and with a batch size of 64.

Results and discussion

Nuclei classification

We tested both DenseNet and DCRN models with
the same setup with a five-fold validation method and
achieved an average of 79.41+1.16 percentage and
81.11 £ 1.27 percentage testing accuracy in terms of
F1-score, respectively. The box-plot of the testing F1-
score of the DenseNet and the DCRN models are
shown in Fig. 10 (a), respectively. The DCRN outper-
formed the DenseNet model in most of the trials.
The comparison against the existing nuclei classifica-
tion methods is shown in Table 2; the proposed
DCRN shows around 1.7% superior performance
when compared against the DenseNet and observed a
significant improvement over other existing methods.
In addition, Fig. 10(b) demonstrates the ROC curve
with Area Under the Curve (AUC) for both models.
First, the False Positive Rate (FPR) and True Positive
Rate (TPR), and AUC are calculated from the pre-
dicted outputs for four classes from both models.
Then, the ROC curve is generated from these metrics
where the DCRN shows 0.86% better AUC than the
DenseNet. In addition, the precision versus recall
curves with Average Precision Score (APS) is shown
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in Fig. 10(c), for demonstrating the performance of
the individual class. For all four categories, the pro-
posed DCRN shows better performance compared to
the DenseNet model.

Furthermore, the deep features have been extracted
from the bottleneck layer from both models for 3967
testing samples. The dimension of feature representa-
tion is (3967 x 4 x 384). Then, a global average pooling
is performed to generate the vector representation of
(3967 x 384). Finally, the uniform Manifold Approxima-
tion and Projection (UMAP) is applied for dimensional-
ity reduction, and clustering the features [46]. The
clustering results for features extracted with the Dense-
Net and DCRN are shown in Fig. 11(a) and (b) respect-
ively. From the plots, it can be clearly observed that the
UMAP shows better clustering for four different types
of nuclei with DCRN features when compared to the
DenseNet. These results clearly demonstrate the robust-
ness of our proposed DCRN model over the DenseNet
for nuclei classification tasks.

Nuclei segmentation

We used a simple R2U-Net model with only 0.983
million network parameters and considered the DC
for monitoring the training progress and measuring
the performance during the testing phases. From the
experiments, we observed that the model converged
after 100 epochs; however, the training and evaluation
continued until 150 epochs to ensure better conver-
gence, considering the lack of the number of samples
available for training. In the testing phase, we
achieved an average of (90.36 £ 0.633)% and (91.90 +
0.364)% testing accuracy in terms of DC score with
U-Net and R2U-Net models respectively. Figure 12(a)
shows the training and validation DC for both U-Net
and R2U-Net models for 150 epochs. The results
demonstrate that the R2U-Net model learned better
compared to the U-Net model during the training

093 Dice Coefficient(DC) for Nuclei Segmentation.

092

091

090

DC

089

088 ~— Tain-DC(R2U_Net)
A —— Tain-DC(U_Net)
087 | = Val-DC(R2U_Net)
—— Val-DC(U_Net)

086

0 20 LY €0 &0 100 120 140

score for five-fold validation

Fig. 12 Results for nuclei segmentation model. a Training and validation DC for the best R2U-Net and U-Net models. b Box plot of testing DC

Testing accuracy for nuclei segmentation tasks
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process. Figure 12(b) shows the box plot of testing
DC score for five-fold validation. The R2U-Net shows
a 1.54% better average DC score compared to the U-
Net model for nuclei segmentation tasks.

Qualitative analysis

Figure 13 shows some example outputs when using the
U-Net and R2U-Net models for nuclei segmentation
tasks where the first column shows the input images, the
second column shows the ground truth masks for the

Page 12 of 17

corresponding input samples, the third column shows
the outputs of the U-Net model, and the fourth column
represents the outputs for R2U-Net model. The pro-
posed R2U-Net segmentation model shows better quan-
titative results compared to the U-Net model during the
testing phase. We also observed that the input sam-
ples in the first row in the third column show the
false detection, which is indicated with an orange
circle. In contrast, the R2U-Net shows very accurate
segmentation results like ground truth in the second

Inputs GT

U-Net R2U-Net

Fig. 13 Qualitative results for both U-Net and R2U-Net models for nuclei segmentation, the first column shows the input samples, the second
column shows the corresponding ground truth (GT) masks, the third column shows the outputs from U-Net and the fourth column shows the
outputs of R2U-Net model. The orange circles show the false detection by the U-Net model
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Fig. 14 Results: (a) Training and validation accuracy and (b) Testing precision, recall, and F1-score of UD-Net model for nuclei detection tasks
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column. Likewise, we can observe the same false de-
tection results in the last rows. In the fourth row,
the black regions appear in the nuclei regions, which
are false negative. However, the R2U-Net model
shows accurate segmentation output in this case.
The U-Net model fails to show the isolated nucleus
marked with an orange circle, whereas the R2U-Net
successfully segmented and separated the individual
nucleus in the third row. Thus, the segmentation re-
sults demonstrate the robustness of the R2U-Net
model for nuclei segmentation tasks compared to
the U-Net model.

Nuclei detection

The training and validation accuracy for the UD-Net
model is shown in Fig. 14(a). Figure 14(b) demonstrates
the box plot of testing precision, recall, and F1-score for
the five independent tests. The precision, recall, and F1-
score are calculated with automatic counting of ground
truth and model prediction of (96 x 96 pixels) input
patches. The quantitative results and comparison against
existing methods are shown in Table 3. A recently pub-
lished paper reported a 0.802 Fl-score as the highest
testing accuracy for nuclei detection [39], whereas the
proposed model shows an average F1-score of 0.8284 +
0.0106 for nuclei detection tasks, which is approximately

Table 3 Nuclei detection accuracy of the proposed model and
comparison against existing methods

Methods Precision Recall Mean F1-score
CRImage [16] 0.657 0461 0.542

CNN [16] 0.783 0.804 0.793

SSAE [46] 0617 0.644 0.630

LIPSyM [46] 0.725 0517 0.604

SC-CNN [39] M=1) 0.758 0.827 0.791

SC-CNN [39] (M=2) 0.781 0.823 0.802

Proposed (UD-Net) 0.822 0.842 0.828

2.26% better performance compared to the SC-CNN
model [39].

The patch-level (96 x 96 pixels) nuclei detection and
ground truth are shown in Fig. 15. The first column
shows the input patches, the second column shows the
ground truth masks, and the third column represents
the model outputs after thresholding with respect to a
value of 0.5. Lastly, the fourth column shows the final
outputs with blue and green solid circles, where the blue
circles indicate the ground truths and the green circles
represent the model outputs respectively. Thus, the
quantitative results demonstrate that the UD-Net model
can detect the nuclei very accurately.

After generating the patch-based outputs, we merged
all the patches (96 x 96 pixels) to create results for the
entire input image (480 x 480 pixels). Figure 16 shows
the outputs of 250 x 250 pixels images which are
cropped by the merged images of (480 x 480 pixels).

Analysis

We conducted a set of experiments to evaluate three es-
sential tasks for nuclei classification, segmentation, and
detection tasks. First, for classification, we applied Den-
seNet, and an improved version of DenseNet named the
DCRN. The DenseNet provides a performance of 0.7941
in terms of Fl-score, whereas the proposed DCRN pro-
vides approximately 0.8111 F1-score. The DCRN pro-
vides around 1.7% better performance in terms of F1-
score against a recently published model of a softmax
Convolutional Neural Network (CNN) and a neighbor-
ing ensemble predictor (NEP) known as softmax CNN +
NEP [39]. Second, we used the R2U-Net for segmenta-
tion and achieved 91.90\% testing accuracy, which is
around 1.54% better performance than the U-Net model.
Third, the UD-Net regression model shows 82.21, 84.27,
and 82.8% for precision, recall, and F1-score respectively.
The proposed model shows around 2.26% improvement
over the existing methods for nuclei detection tasks.
Overall, the proposed models provide superior
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Fig. 15 Nuclei detection outputs with inputs, ground truth, model outputs after thresholding, and final outputs with a blue and green dot. The
blue dot represents the ground truth and the green dot shows the center pixels of the network outputs

Table 4 Computational time for the DCRN, R2U-Net, and UD-Net models in the testing phase in seconds

Model Task Computational time/epoch (Sec.)
DCRN Classification 0.0017

R2U-Net Segmentation 0.57239

UD-Net regression model Detection 3.19906
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performance for all three tasks. The testing time per
sample for classification, segmentation, and detection is
shown in Table 4.

Conclusion

In this study, we proposed three different models, in-
cluding the Densely Connected Recurrent Convolutional
Network (DCRN), the Recurrent Residual U-Net (R2U-
Net), and the R2U-Net-based regression named the Uni-
versity of Dayton Net (UD-Net) for nuclei classification,
segmentation, and detection tasks respectively. These
models are evaluated on three different publicly available
datasets. Firstly, we achieved 81.14% testing accuracy in
terms of F1-score for the nuclei classification task that is
1.7% higher than recently published results. Secondly,
the R2U-Net model shows1.54% better testing accuracy
against the U-Net model for nuclei segmentation tasks.
Finally, for nuclei detection tasks, we achieved 82.8%
testing accuracy in terms of F1l-score with the proposed
UD-Net, which is a 2.6% better F1l-score compared to

the existing methods. In the future, we would like to ex-
plore these models on more challenging datasets.
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