As per March 2014, 7,440 slides had been scanned for primary diagnosis/urgent analyses; 1,329 for IOC cases and 2,308 for expert opinions. Most IOC were from breast cancers (sentinel lymph nodes, margin close to breast cancer), lung cancer (bronchial margins, mediastinal lymph nodes) and from ovarian, pleural, peritoneal, omental lesions and from stomach and head and neck cancers (Moh's surgery). In addition, a total of 1,260 sessions of macroscopy supervision have been performed. Several smaller laboratories in community hospitals which don't have complete immunohistochemical facilities requested immunohistochemical analyses from larger laboratories. Results were occasionally returned by telepathology to obtain faster results. Although not used extensively yet, telepathology offers an interesting alternative to improve turnaround time in such situation. Teaching cases have also been shared through the mScope academic solution to allow pathologists across the Network to participate to continuing medical education and quality assurance activities.
Quality assurance is an important part of the activities of the Network. A steering committee oversees all activities of the Network, including quality assurance. Before any implementation, all potential users are being trained to use the technology. Policies have been developed regarding the indications and contra-indications of telepathology for IOC. A troubleshooting process for both the macroscopy station and the WSI system has been implemented and is being performed every morning before the beginning of IOC. Performance parameters (turnaround time, concordance studies, deferred cases) are documented. The possibility of implementing a systematic process to regularly review a number of telepathology cases is being developed as part of the Québec Quality Assurance plan. A recent quality assurance investigation showed a 98% concordance rate between the diagnosis made on the frozen material of the IOC cases compared to the final diagnosis rendered on paraffin material [2]. This concordance rate compares favorably with the situation when both the surgeon and the pathologist are at the same site [3, 4]. The average turnaround time of IOC cases was 20 minutes and met the College of American Pathologists' recommendation when both the surgeon and the pathologist share the same site [5]. Expert opinion reports were signed out within 24 hours in 68% of cases and within 72 hours in 85%, which is well within the recommendations of the Association of Directors of Anatomic and Surgical Pathology [6, 7]. In other words, telepathology allowed to maintain the same level of quality required in the practice of surgical pathology.
Furthermore, a recent multi-method evaluation [8] study of the Network was performed to better understand the expected and unexpected effects of telepathology on health care professionals and patients as well as on the regional organization and delivery of surgical services. Four major benefits of the introduction of telepathology have been identified. First, the interruption of IOC service was clearly prevented in hospitals with no pathologist on site. In two remote pathology laboratories, a pathologist has been on-site for more than 10 years and moved to another laboratory in two months of notice. To maintain the surgical activities requiring IOC, the only option was to obtain support from a remote pathologist by telepathology. This support was provided which allowed the continuation of the surgical activities. Second, surgeons who were interviewed mentioned that two-stage surgeries and patient transfers were prevented by telepathology. This benefit was expected for hospitals which pathology laboratory lacked a pathologist on site but was also wished in the 4 hospitals devoid of pathology laboratory and where the surgeons never had access to this service. In one of the latter, over 98 slides had been scanned for IOC, less than one year after system implementation, demonstrating the existence of such a need. Third, retention and recruitment of surgeons in remote hospitals were both facilitated. Our observations revealed at least one case of staff recruitment and one instance of staff retention in remote hospitals, thanks to the deployment of telepathology. Fourth, professional isolation and insecurity among pathologists working alone was reduced. Over 2,000 slides were submitted for expertise from such pathologists since the launch of the clinical activities in January 2011. Pathologists agreed that wider adoption of telepathology for clinical use would require improvement of current technologies, mainly in connection with response time and the ergonomics of the current software. Furthermore, the sustainability of such a network would need better coordination between the different hospitals of the Network. To be fully operational, a telepathology Network would require the creation of a regional or even a supra-regional organisation which would allow pathologists from any of the participating sites to share urgent and difficult cases. The recent evaluation of the network pointed out the gap between the overall objective of the network to offer consistent pathology coverage in a region and the legal requirement for each institution to prioritize its own in-house cases and to meet defined turnaround times. It seems clear that such technology will force different jurisdictions around the world to redefine the routing and prioritization of most urgent surgical pathology cases and adopt a more integrated and comprehensive pathology coverage at a regional or national level.
The Eastern Québec Telepathology Network is currently the most ambitious telepathology project in Canada and ranks among the most important in the world in terms of both the number of sites and geographic coverage [9]. The data collected since the implementation of the Network and summarized in this article confirm that telepathology helps to improve the accessibility and quality of surgical services in remote regions, particularly for oncological surgeries. Our experience also confirms, as reported by others [10], that the overall diagnostic review by WSI was not inferior to microscope slide review. Furthermore, data reported in the present study reveals that telepathology played a key role to support pathologists working alone and to ensure their retention in remote hospitals. Indeed, it is estimated that 10 to 20% of oncologic cases must be validated by more than one pathologist [11] and we demonstrated that telepathology is a fast and efficient method to reach this objective among pathologists practicing far from academic centers. Finally, our Network also allowed isolated pathologists to participate to online academic seminars and activities organized by academic pathologists. Current literature shows that telemedicine may help to retain physicians in remote regions by contributing to provide better working conditions [12–14]. The access to expert opinions and continuing medical education activities also ranks among those improved conditions.
However, despite the clear advantages of introducing telepathology in the daily pathology practice, there is still resistance from many pathologists and surgeons to adopt the digital technology. We identified a number of barriers to this adoption and several major legal, reimbursement, and licensure issues have already been addressed. It is clear, however, that human factors relating to the fear of using a new technology rank among the most important limitations which explains such inertia in many laboratories, even in academic institutions [1]. However, the key to the success of telepathology requires a strong communication plan and a highly coordinated effort between surgeons, pathologists, stakeholders, laboratory staff, biomedical, administrative and IT support teams working on different sites. In our network, a central coordination center financially supported by the Québec Ministry of Health has been created and each site is being visited regularly or invited to participate to follow-up videoconferences. In the past year, major steps have been completed to improve the adoption of the technology by the pathology community. A guideline on the validation process of WSI for diagnostic purposes in pathology has been recently released by the College of American Pathologists [15] and the Canadian Association of Pathologists mandated a group of Canadian experts to develop a series of guidelines to establish a telepathology service[16]. Image storage and archiving is also a major issue because of the large size of WSI. Initially, since IOC are being systematically controlled on paraffin material shortly after the surgery, it was planned to save WSI for a limited period of time only. However, a legal advice recommended applying the same retention schedule for WSI as for slides and paraffin blocks. Currently, all images are being saved and different alternatives for permanent long-term storage in our Network are under investigation.
Digital pathology has been successfully implemented in many countries around the world for education, clinical pathological conferences, and research [17]. Its adoption for diagnostic purposes is increasing, but there are still few examples of structured patient-centered networks [18, 19] largely because of the many barriers that need to be overcome [20]. Canada has been a world leader in the implementation of telepathology and, recently, several companies obtained a Health Canada Class II Medical Device License for creating, managing, storing, annotating, measuring, and viewing digital whole-slide images for routine pathology [21]. Such leadership may be attributed to the initiative of a few leading individuals and to the financial support of provincial governments and Canada Health Infoway. However, it is clear that the demographic, geographic and situational characteristics of Canada, such as its immense territory, its dispersed population and the severe shortage of anatomical pathologists may explain, at least in part, the expansion of telepathology in this country.