Mortimer R, Nachiappan S, Howlett DC. Carotid artery stenosis screening: where are we now? Br J Radiol. 2018;91(1090):20170380.
Article
PubMed
PubMed Central
Google Scholar
Dharmakidari S, Bhattacharya P, Chaturvedi S. Carotid artery stenosis: medical therapy, surgery, and stenting. Curr Neurol Neurosci Reports. 2017;17(10):77.
Article
Google Scholar
Halliday A, Mansfield A, Marro J, Peto C, Peto R, Potter J, et al. Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial. Lancet (London, England). 2004;363(9420):1491–502.
Article
CAS
Google Scholar
Yoshida K, Miyamoto S. Evidence for management of carotid artery stenosis. Neurol Med Chir. 2015;55(3):230–40.
Article
Google Scholar
Volný O, Kašičková L, Coufalová D, Cimflová P, Novák J. microRNAs in Cerebrovascular Disease. Adv Exp Med Biol. 2015;888(undefined):155–95.
Article
PubMed
CAS
Google Scholar
Xu F, Zhou F. Inhibition of microRNA-92a ameliorates lipopolysaccharide-induced endothelial barrier dysfunction by targeting ITGA5 through the PI3K/Akt signaling pathway in human pulmonary microvascular endothelial cells. Int Immunopharmacol. 2019;78(undefined):106060.
PubMed
Google Scholar
Wei Q, Tu Y, Zuo L, Zhao J, Chang Z, Zou Y, et al. MiR-345-3p attenuates apoptosis and inflammation caused by oxidized low-density lipoprotein by targeting TRAF6 via TAK1/p38/NF-kB signaling in endothelial cells. Life Sci. 2019;241(undefined):117142.
PubMed
Google Scholar
Khoo CP, Roubelakis MG, Schrader JB, Tsaknakis G, Konietzny R, Kessler B, et al. miR-193a-3p interaction with HMGB1 downregulates human endothelial cell proliferation and migration. Sci Report. 2017;7(undefined):44137.
Article
Google Scholar
Zhang R, Sui L, Hong X, Yang M, Li W. MiR-448 promotes vascular smooth muscle cell proliferation and migration in through directly targeting MEF2C. Environ Sci Pollut Res Int. 2017;24(28):22294–300.
Article
PubMed
CAS
Google Scholar
Dolz S, Górriz D, Tembl JI, Sánchez D, Fortea G, Parkhutik V, et al. Circulating MicroRNAs as novel biomarkers of stenosis progression in asymptomatic carotid stenosis. Stroke. 2017;48(1):10–6.
Article
CAS
PubMed
Google Scholar
Han Z, Hu H, Yin M, Li X, Li J, Liu L, et al. miR-145 is critical for modulation of vascular smooth muscle cell proliferation in human carotid artery stenosis. J Biol Regul Homeost Agents. 2018;32(3):506–16.
CAS
PubMed
Google Scholar
Luo T, Cui S, Bian C, Yu X. Crosstalk between TGF-beta/Smad3 and BMP/BMPR2 signaling pathways via miR-17-92 cluster in carotid artery restenosis. Mol Cell Biochem. 2014;389(1–2):169–76.
Article
CAS
PubMed
Google Scholar
Johnson JL. Elucidating the contributory role of microRNA to cardiovascular diseases (a review). Vasc Pharmacol. 2019;114:31–48.
Article
CAS
Google Scholar
Huang Y, Tang S, Ji-Yan C, Huang C, Li J, Cai AP, et al. Circulating miR-92a expression level in patients with essential hypertension: a potential marker of atherosclerosis. J Hum Hypertens. 2017;31(3):200–5.
Article
CAS
PubMed
Google Scholar
Wang WY, Zheng YS, Li ZG, Cui YM, Jiang JC. MiR-92a contributes to the cardiovascular disease development in diabetes mellitus through NF-κB and downstream inflammatory pathways. Eur Rev Med Pharmacol Sci. 2019;23(7):3070–9.
PubMed
Google Scholar
Loh WP, Yang Y, Lam KP. miR-92a enhances recombinant protein productivity in CHO cells by increasing intracellular cholesterol levels. Biotechnol J. 2017;12(4):undefined.
Article
CAS
Google Scholar
Moulton KS, Li M, Strand K, Burgett S, McClatchey P, Tucker R, et al. PTEN deficiency promotes pathological vascular remodeling of human coronary arteries. JCI Insight. 2018;3(4):e97228.
Article
PubMed Central
Google Scholar
Wei L, Zhao S, Wang G, Zhang S, Luo W, Qin Z, et al. SMAD7 methylation as a novel marker in atherosclerosis. Biochem Biophys Res Commun. 2018;496(2):700–5.
Article
CAS
PubMed
Google Scholar
Huang T, Zhao HY, Zhang XB, Gao XL, Peng WP, Zhou Y, et al. LncRNA ANRIL regulates cell proliferation and migration via sponging miR-339-5p and regulating FRS2 expression in atherosclerosis. Eur Rev Med Pharmacol Sci. 2020;24(4):1956–69.
CAS
PubMed
Google Scholar
Rudd AG, Bowen A, Young GR, James MA. The latest national clinical guideline for stroke. Clin Med (London, England). 2017;17(2):154–5.
Article
Google Scholar
Meschia JF, Klaas JP, Brown RD, Brott TG. Evaluation and Management of Atherosclerotic Carotid Stenosis. Mayo Clin Proc. 2017;92(7):1144–57.
Article
PubMed
PubMed Central
Google Scholar
Liu S, Cai J, Ge F, Yue W. The risk of ischemic events increased in patients with asymptomatic carotid stenosis with decreased cerebrovascular reserve. J Investig Med. 2017;65(7):1028–32.
Article
PubMed
Google Scholar
Hajibabaie F, Kouhpayeh S, Mirian M, Rahimmanesh I, Boshtam M, Sadeghian L, et al. MicroRNAs as the actors in the atherosclerosis scenario. J Physiol Biochem. 2019;undefined(undefined):undefined.
Google Scholar
Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh V, Rana M, Jain M, Singh N, Naqvi A, Malasoni R, et al. Curcuma oil attenuates accelerated atherosclerosis and macrophage foam-cell formation by modulating genes involved in plaque stability, lipid homeostasis and inflammation. Br J Nutr. 2015;113(1):100–13.
Article
CAS
PubMed
Google Scholar
Merino H, Parthasarathy S, Singla DK. Partial ligation-induced carotid artery occlusion induces leukocyte recruitment and lipid accumulation--a shear stress model of atherosclerosis. Mol Cell Biochem. 2013;372(null):267–73.
Article
CAS
PubMed
Google Scholar
Zheng B, Yin WN, Suzuki T, Zhang XH, Zhang Y, Song LL, et al. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther. 2017;25(6):1279–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gong FH, Cheng WL, Wang H, Gao M, Qin JJ, Zhang Y, et al. Reduced atherosclerosis lesion size, inflammatory response in miR-150 knockout mice via macrophage effects. J Lipid Res. 2018;59(4):658–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eken SM, Jin H, Chernogubova E, Li Y, Simon N, Sun C, et al. MicroRNA-210 enhances fibrous cap stability in advanced atherosclerotic lesions. Circ Res. 2017;120(4):633–44.
Article
CAS
PubMed
Google Scholar
Liu K, Xuekelati S, Zhang Y, Yin Y, Li Y, Chai R, et al. Expression levels of atherosclerosis-associated miR-143 and miR-145 in the plasma of patients with hyperhomocysteinaemia. BMC Cardiovasc Disord. 2017;17(1):163.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wei X, Sun Y, Han T, Zhu J, Xie Y, Wang S, et al. Upregulation of miR-330-5p is associated with carotid plaque's stability by targeting Talin-1 in symptomatic carotid stenosis patients. BMC Cardiovasc Disord. 2019;19(1):149.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hijmans JG, Diehl KJ, Bammert TD, Kavlich PJ, Lincenberg GM, Greiner JJ, et al. Association between hypertension and circulating vascular-related microRNAs. J Hum Hypertens. 2018;32(6):440–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Zhou M, Wang Y, Huang W, Qin G, Weintraub NL, et al. miR-92a inhibits vascular smooth muscle cell apoptosis: role of the MKK4-JNK pathway. Apoptosis. 2014;19(6):975–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiese CB, Zhong J, Xu ZQ, Zhang Y, Ramirez Solano MA, Zhu W, et al. Dual inhibition of endothelial miR-92a-3p and miR-489-3p reduces renal injury-associated atherosclerosis. Atherosclerosis. 2019;282(undefined):121–31.
Article
CAS
PubMed
Google Scholar
Niculescu LS, Simionescu N, Fuior EV, Stancu CS, Carnuta MG, Dulceanu MD, et al. Inhibition of miR-486 and miR-92a decreases liver and plasma cholesterol levels by modulating lipid-related genes in hyperlipidemic hamsters. Mol Biol Rep. 2018;45(4):497–509.
Article
CAS
PubMed
Google Scholar
Huang HT, Liu ZC, Wu KQ, Gu SR, Lu TC, Zhong CJ, et al. MiR-92a regulates endothelial progenitor cells (EPCs) by targeting GDF11 via activate SMAD2/3/FAK/Akt/eNOS pathway. Ann Trans Med. 2019;7(20):563.
Article
CAS
Google Scholar
Wang Z, Zhang J, Zhang S, Yan S, Wang Z, Wang C, et al. MiR30e and miR92a are related to atherosclerosis by targeting ABCA1. Mol Med Rep. 2019;19(4):3298–304.
CAS
PubMed
Google Scholar
Mirzaei H, Momeni F, Saadatpour L, Sahebkar A, Goodarzi M, Masoudifar A, et al. MicroRNA: relevance to stroke diagnosis, prognosis, and therapy. J Cell Physiol. 2018;233(2):856–65.
Article
CAS
PubMed
Google Scholar
Elhamamsy AR, El Sharkawy MS, Zanaty AF, Mahrous MA, Mohamed AE, Abushaaban EA. Circulating miR-92a, miR-143 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia. Int J Mol Cell Med. 2017;6(2):77–86.
PubMed
PubMed Central
Google Scholar
Kong Q, Tang Z, Xiang F, Jiang J, Yue H, Wu R, et al. Diagnostic value of serum hsa-mir-92a in patients with cervical Cancer. Clin Lab. 2017;63(2):335–40.
CAS
PubMed
Google Scholar
He JR, Zhang Y, Lu WJ, Liang HB, Tu XQ, Ma FY, et al. Age-Related Frontal Periventricular White Matter Hyperintensities and miR-92a-3p Are Associated with Early-Onset Post-Stroke Depression. Front Aging Neurosci. 2017;9(undefined):328.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen E, Li Q, Wang H, Yang F, Min L, Yang J. MiR-92a promotes tumorigenesis of colorectal cancer, a transcriptomic and functional based study. Biomed Pharmacother. 2018;106:1370–7.
Article
CAS
PubMed
Google Scholar
Tao XC, Zhang XY, Sun SB, Wu DQ. miR92a contributes to cell proliferation, apoptosis and doxorubicin chemosensitivity in gastric carcinoma cells. Oncol Rep. 2019;42(1):313–20.
CAS
PubMed
Google Scholar