Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.
Article
CAS
PubMed
Google Scholar
Barlesi F, Mazieres J, Merlio JP, et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: results of a 1-year nationwide programme of the French cooperative thoracic intergroup (IFCT). Lancet. 2016;387:1415–26.
Article
CAS
PubMed
Google Scholar
Gainor JF, Varghese AM, Ou SH, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res. 2013;19:4273–81.
Article
CAS
PubMed
Google Scholar
Zhang X, Zhang S, Yang X, et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 2010;9:188.
Article
PubMed
PubMed Central
Google Scholar
Popat S, Vieira de Araujo A, Min T, et al. Lung adenocarcinoma with concurrent exon 19 EGFR mutation and ALK rearrangement responding to erlotinib. J Thorac Oncol. 2011;6:1962–3.
Article
PubMed
Google Scholar
Zhou J, Zheng J, Zhao J, Sheng Y, Ding W. Poor response to gefitinib in lung adenocarcinoma with concomitant epidermal growth factor receptor mutation and anaplastic lymphoma kinase rearrangement. Thorac Cancer. 2015;6:216–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazur MT, Hsueh S, Gersell DJ. Metastases to the female genital tract. Analysis of 325 cases. Cancer. 1984;53:1978–84.
Article
CAS
PubMed
Google Scholar
Irving JA, Young RH. Lung carcinoma metastatic to the ovary: a clinicopathologic study of 32 cases emphasizing their morphologic spectrum and problems in differential diagnosis. Am J Surg Pathol. 2005;29:997–1006.
PubMed
Google Scholar
Niu FY, Zhou Q, Yang JJ, et al. Distribution and prognosis of uncommon metastases from non-small cell lung cancer. BMC Cancer. 2016;16:149.
Article
PubMed
PubMed Central
Google Scholar
Lee KA, Lee JS, Min JK, et al. Bilateral ovarian metastases from ALK rearranged non-small cell lung Cancer. Tuberc Respir Dis (Seoul). 2014;77:258–61.
Article
Google Scholar
Fujiwara A, Higashiyama M, Kanou T, et al. Bilateral ovarian metastasis of non-small cell lung cancer with ALK rearrangement. Lung Cancer. 2014;83:302–4.
Article
PubMed
Google Scholar
West AH, Yamada SD, MacMahon H, et al. Unique metastases of ALK mutated lung cancer activated to the adnexa of the uterus. Case Rep Clin Pathol. 2014;1:151–4.
PubMed
PubMed Central
Google Scholar
Mushi RT, Yang Y, Cai Q, et al. Ovarian metastasis from non-small cell lung cancer with ALK and EGFR mutations: a report of two cases. Oncol Lett. 2016;12:4361–6.
Article
PubMed
PubMed Central
Google Scholar
Wang W, Wu W, Zhang Y. Response to crizotinib in a lung adenocarcinoma patient harboring EML4-ALK translocation with adnexal metastasis: a case report. Medicine (Baltimore). 2016;95:e4221.
Article
Google Scholar
Jing X, Li F, Meng X, et al. Ovarian metastasis from lung adenocarcinoma with ALK-positive rearrangement detected by next generation sequencing: a case report and literatures review. Cancer Biol Ther. 2017;18:279–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Giordano G, Cruz Viruel N, Silini EM, Nogales FF. Adenocarcinoma of the lung metastatic to the ovary with a signet ring cell component. Int J Surg Pathol. 2017;25:365–7.
Article
PubMed
Google Scholar
Sasano H, Sekine A, Hirata T, et al. Ovarian metastases from ALK-rearranged lung adenocarcinoma: a case report and literature review. Intern Med. 2018;57:3271–5.
Article
PubMed
PubMed Central
Google Scholar
Bi R, Bai QM, Yang F, et al. Microcystic stromal tumour of the ovary: frequent mutations of beta-catenin (CTNNB1) in six cases. Histopathology. 2015;67:872–9.
Article
PubMed
Google Scholar
Li Z, Dacic S, Pantanowitz L, et al. Correlation of cytomorphology and molecular findings in EGFR+, KRAS+, and ALK+ lung carcinomas. Am J Clin Pathol. 2014;141:420–8.
Article
CAS
PubMed
Google Scholar
Trejo Bittar HE, Luvison A, Miller C, Dacic S. A comparison of ALK gene rearrangement and ALK protein expression in primary lung carcinoma and matched metastasis. Histopathology. 2017;71:269–77.
Article
PubMed
Google Scholar
Paralkar VR, Li T, Langer CJ. Population characteristics and prognostic factors in metastatic non-small-cell lung cancer: a fox Chase Cancer Center retrospective. Clin Lung Cancer. 2008;9:116–21.
Article
PubMed
Google Scholar
Quint LE, Tummala S, Brisson LJ, et al. Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg. 1996;62:246–50.
Article
CAS
PubMed
Google Scholar
Diem S, Fruh M, Rodriguez R, Liechti P, Rothermundt C. EML4-ALK-positive pulmonary adenocarcinoma with an unusual metastatic pattern: a case report. Case Rep Oncol. 2013;6:316–9.
Article
PubMed
PubMed Central
Google Scholar
Sooa Choi CKP, Kim SY, Yoon HK, Ro SM, Nam Y. Uterine cervix metastasis in lung adenocarcinoma with anaplastic lymphoma kinase rearrangement. Soonchunhyang Medical Science. 2015;21:142–5.
Article
Google Scholar
Chuang X, Chen Y, Yu P, et al. ALK rearrangement in lung adenocarcinoma with concurrent cervix and breast metastases: a case report. Thorac Cancer. 2018;9:1513–8.
Article
PubMed
PubMed Central
Google Scholar
Robert J. Kurman MLC, C. Simon Herrington, Robert H. Young. WHO Classification of tumors of female reproductive organs. International Agency for Research on Cancer, Lyon 2014; 4th edition, 27.
Lee KR, Young RH. The distinction between primary and metastatic mucinous carcinomas of the ovary: gross and histologic findings in 50 cases. Am J Surg Pathol. 2003;27:281–92.
Article
PubMed
Google Scholar
Seidman JD, Kurman RJ, Ronnett BM. Primary and metastatic mucinous adenocarcinomas in the ovaries: incidence in routine practice with a new approach to improve intraoperative diagnosis. Am J Surg Pathol. 2003;27:985–93.
Article
PubMed
Google Scholar
Ye J, Hameed O, Findeis-Hosey JJ, et al. Diagnostic utility of PAX8, TTF-1 and napsin a for discriminating metastatic carcinoma from primary adenocarcinoma of the lung. Biotech Histochem. 2012;87:30–4.
Article
CAS
PubMed
Google Scholar
Ye J, Findeis-Hosey JJ, Yang Q, et al. Combination of napsin a and TTF-1 immunohistochemistry helps in differentiating primary lung adenocarcinoma from metastatic carcinoma in the lung. Appl Immunohistochem Mol Morphol. 2011;19:313–7.
Article
CAS
PubMed
Google Scholar
Gupta R, Amanam I, Rahmanuddin S, et al. Anaplastic lymphoma kinase (ALK)-positive tumors: clinical, radiographic and molecular profiles, and uncommon sites of metastases in patients with lung adenocarcinoma. Am J Clin Onco. 2019;42:337–44.
Article
CAS
Google Scholar
Doebele RC, Lu X, Sumey C, et al. Oncogene status predicts patterns of metastatic spread in treatment-naive nonsmall cell lung cancer. Cancer. 2012;118:4502–11.
Article
CAS
PubMed
Google Scholar
Hou L, Ren S, Su B, et al. High concordance of ALK rearrangement between primary tumor and paired metastatic lymph node in patients with lung adenocarcinoma. J Thorac Dis. 2016;8:1103–11.
Article
PubMed
PubMed Central
Google Scholar
Takahashi T, Sonobe M, Kobayashi M, et al. Clinicopathologic features of non-small-cell lung cancer with EML4-ALK fusion gene. Ann Surg Oncol. 2010;17:889–97.
Article
PubMed
Google Scholar
Wong DW, Leung EL, So KK, et al. The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer. 2009;115:1723–33.
Article
CAS
PubMed
Google Scholar
Kamata T, Yoshida A, Shiraishi K, et al. Mucinous micropapillary pattern in lung adenocarcinomas: a unique histology with genetic correlates. Histopathology. 2016;68:356–66.
Article
PubMed
Google Scholar
Inamura K, Takeuchi K, Togashi Y, et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol. 2009;22:508–15.
Article
CAS
PubMed
Google Scholar
Sun PL, Seol H, Lee HJ, et al. High incidence of EGFR mutations in Korean men smokers with no intratumoral heterogeneity of lung adenocarcinomas: correlation with histologic subtypes, EGFR/TTF-1 expressions, and clinical features. J Thorac Oncol. 2012;7:323–30.
Article
CAS
PubMed
Google Scholar
Chen Z, Liu X, Zhao J, Yang H, Teng X. Correlation of EGFR mutation and histological subtype according to the IASLC/ATS/ERS classification of lung adenocarcinoma. Int J Clin Exp Pathol. 2014;7:8039–45.
PubMed
PubMed Central
Google Scholar
Han HS, Eom DW, Kim JH, et al. EGFR mutation status in primary lung adenocarcinomas and corresponding metastatic lesions: discordance in pleural metastases. Clin Lung Cancer. 2011;12:380–6.
Article
CAS
PubMed
Google Scholar
Gow CH, Chang YL, Hsu YC, et al. Comparison of epidermal growth factor receptor mutations between primary and corresponding metastatic tumors in tyrosine kinase inhibitor-naive non-small-cell lung cancer. Ann Oncol. 2009;20:696–702.
Article
PubMed
Google Scholar
Demidova I, Barinov A, Savelov N, et al. Immunohistochemistry, fluorescence in situ hybridization, and reverse transcription-polymerase chain reaction for the detection of anaplastic lymphoma kinase gene rearrangements in patients with non-small cell lung cancer: potential advantages and methodologic pitfalls. Arch Pathol Lab Med. 2014;138:794–802.
Article
CAS
PubMed
Google Scholar
Wu SG, Kuo YW, Chang YL, et al. EML4-ALK translocation predicts better outcome in lung adenocarcinoma patients with wild-type EGFR. J Thorac Oncol. 2012;7:98–104.
Article
CAS
PubMed
Google Scholar