Skip to main content

COVID-19: critical case of a patient with an atypical manifestation of the disease



COVID-19 was initially described as a severe acute respiratory disease that could drive to pneumonia, compromising the life of the patients in the worst scenario. However, even though in most of the cases the respiratory symptoms are still the most common manifestations of the disease, nowadays it is considered as a complex multisystem illness, affecting a variety of organs and tissues. Asymptomatic and atypic cases have also been described, where symptoms are not related to those first described, as is the case of this report.

Case presentation

On November 23, 2020, a 53-year-old woman goes to the emergency room due to gastrointestinal symptoms. The admission diagnosis was inflammatory bowel disease and a mild event of idiopathic chronic ulcerative colitis, and the initial treatment was focused on the metabolic acidosis, and the reestablishment the hydroelectrolytic and hemodynamic balance. Then, she was transferred to the Gastroenterology Unit where she was treated for one week. During her hospitalization, she showed a refractory shock caused by progressive organ deterioration (renal and neurological), requiring a double-vasopressor support, oxygenation, and ventilation. Considering the laboratory tests results and computed tomography scans, a COVID-19 test was carried out, obtaining a positive result with a high viral load. The S gene of the virus was amplified and sequenced, finding an uncommon mutation rarely reported worldwide. After considerable systemic deterioration, the patient presented cardiorespiratory arrest, with no response and died on December 1, after 8 days of hospitalization.


In this report we describe the pathogenesis, clinical manifestations, and outcome of a patient with atypical COVID-19 symptoms (mainly gastrointestinal), rapidly evolving and with lethal consequences. Therefore, it is important to emphasize the need to strengthen patient surveillance in health centers, including those who do not present typical symptoms of COVID-19. In addition, it will be important to track the identified mutation (H1058Y) in the S viral gene and assess whether it could be associated with a different clinical manifestation of the disease or if it was just an isolated event.


In December 2019, a novel human infectious disease emerged in Wuhan, China, beginning with an atypical pneumonia with an unknown cause [1]. As the disease rapidly spread, it was possible to isolate and identify the causal agent of the coronavirus disease 19 (COVID-19): a new coronavirus named Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [2]. Initially, it was considered solely as a respiratory infection with a variety of presentations, from mild respiratory tract infection to severe pneumonia and acute respiratory distress syndrome, but over the time, and due to the exponentially increased number of infections, it became evident that other organs and tissues are also affected by this virus.

The S protein of SARS-CoV-2 is responsible for the recognition of the host cell, as it binds to the angiotensin-converting protein 2 (ACE-2) of the target cell, mediating the entry of the virus [3]. ACE-2 receptors are expressed in a large number of tissues, including the lung epithelium, nasal mucosa, kidneys, heart, and small intestine, which facilitates extrapulmonary infection by SARS-CoV-2, causing a wide variety of complications in different organs [4].

Mutations on the S viral gene, specifically on the receptor binding domain (responsible of the physically interaction with ACE-2) can potentially determine a differential affinity for this receptor or other tissues, and consequently, possible different clinical manifestations [5].

Case presentation

A 53-year-old woman began with gastrointestinal symptoms on November 15, 2020: Bristol type 7 stool evacuations, without mucus or blood, in an amount of 2 per day (approximately 100 ml per occasion), with no food remains, without urgency, and with fecal incontinence. She declared to be a smoker (suspended 6 years ago), not an alcoholic, and having had a transfusion on November 2019 (due to severe anemia). The patient also reported having been diagnosed with Idiopathic Chronic Ulcerative Colitis (ICUC) in November 2019, after presenting episodes of intermittent diarrhea of ​​2 years of evolution (10 depositions/day). She was medicated with mezalazine, cholecalciferol, omega 3 and omeprazole.

On November 23, 2020, she goes to the emergency room due to an increase in the number and volume of depositions, probably associated with the suspension of the treatment (referred by a family member). Initial exploration showed a frank wasting syndrome, apparent age of the patient equal to true chronological age. Oriented, Glasgow Coma Scale: 15. Oral mucosa with a regular state of hydration. Chest with conserved movements, with no pleuropulmonary syndrome. Abdomen without visceromegaly. Rectal examination was performed with difficulty due to anal pain, hypertonic sphincter, and traces of fresh blood in evacuations were found, and no lumps were palpated.

The admission diagnosis was inflammatory bowel disease and a mild event of ICUC (Table 1. Admission diagnosis). The patient met the criteria for hemodynamic instability, hence, hydroelectrolytic replacement began, without requiring support with amines. Once stabilized, she was transferred to the Gastroenterology Unit.

Table 1 Admission diagnosis

Considering the clinical background and the initial evaluation at the emergency room, the treatment strategy was focused on the gastrointestinal symptoms and the reestablishment the hydroelectrolytic and hemodynamic balance. Daily laboratory tests were performed, as well as a variety of clinical examinations. A marked metabolic acidosis (pH = 6.8) by the time of the admission stands out, which gradually decreased through day 7 of hospitalization (pH = 7.2). Regarding serum electrolytes, she showed hyperphosphatemia (4.6–5.1 mg/dl), hyperchloremia (109–129 mg/dl), and hypocalcemia (4.5–6.9 mg/dl) as well as intermittently hypokalemia, during the whole time that she remained hospitalized; and hypernatremia in the last three days of hospitalization.

Blood count tests showed altered profiles during the whole time of hospitalization (Fig. 1), highlighting an elevated percentage of neutrophils, although in the cell count, a clear increase is observed only between days 2 and 5 of hospitalization (Fig. 1 A). ​​In total lymphocytes and monocytes, both cell count and percentage levels, were always lower than the reference values (Fig. 1B C), in addition, low number of total platelets was detected throughout the hospitalization time (Fig. 1D).

Fig. 1
figure 1

Blood count tests. The graphs of different measurements of blood cells during the time of hospitalization of the patient are shown. A neutrophils, B lymphocytes, C monocytes, and D platelets. Cell number (blue line) and percentage (red line) values ​​are shown; the solid blue bar and the interval between the red dotted lines represent the reference values ​​for cell count and percentage, respectively

At least three indicators of renal dysfunction were also observed (Fig. 2): uremia (Fig. 2 A, mean urea values = 127.8 mg/dl), elevated creatinine levels (Fig. 2B, mean values = 1.6 mg/dl) and hypoalbuminemia (Fig. 2 C, mean albumin values = 2.1 mg/dl).

Fig. 2
figure 2

Renal profile tests. The graphs of (A) urea, (B) creatinine and (C) albumin values ​​measured during the patient’s hospitalization are shown. The solid blue bar represents the reference values ​​for each analyte

One day after admission to the emergency unit, an upper endoscopy was performed, and one of the findings was an esophageal candidiasis KPDSI III, for which fluconazole was administered (Table 2).

During the patient’s hospitalization, the levels of the inflammatory markers procalcitonin and C-reactive protein were measured. Regarding procalcitonin values, the following was obtained: on the day of hospital admission, it showed a moderate elevation (4.53 ng/ml); three days later, on November 26, the value increased significantly (26.69 ng/ml) even though the patient started with preventive treatment with ceftriaxone the day before. That same day a blood culture was performed and even without the laboratory result, it was decided to change the antibiotic to imipenem. The result of the blood culture (three days after the blood culture request) indicated growth of Pseudomonas aeruginosa, and treatment with imipenem was continued (indicated for the treatment of infection with P. aeruginosa). On the fifth day of hospitalization, the procalcitonin value continued to increase despite antimicrobial treatment (188 ng/ml).

Regarding the C-reactive protein (CRP) results, the value obtained on the day of hospital admission was within the normal parameter (8.44 mg/L). The next day, the concentration increased to 13.2 mg/L, which was not unexpected considering the underlying pathology (ICUC). On the fifth day of hospitalization, the concentration decreased to a value within the normal parameter (6.72 mg/L). During this period, the patient was administered with both non-steroidal and steroidal anti-inflammatory drugs.

In addition, other diagnostic support studies were performed during hospitalization due to the poor prognostic. In accordance with the clinical evolution, computed tomography scans were performed in different anatomical areas, the findings of which are described in Table 2. These studies, together with the laboratory results, revealed a refractory shock caused by a progressive organ deterioration (renal and neurological), requiring a double-vasopressor support, oxygenation, and ventilation.

Table 2 Clinical examinations

Computed tomography scans suggested a possible SARS-CoV-2 infection; therefore, on November 28 (day 5 of hospitalization), a COVID-19 test as well as D-dimer and ferritin determination were conducted. Nasopharyngeal and oropharyngeal swabs were performed, and the sample was tested for SARS-CoV-2 by using GeneFinder™ COVID-19 Plus RealAmp Kit, showing a positive result for COVID-19, with a high viral load evidenced by the quantification cycle (Cq) values: 16.4 for viral gene E; 17.17 for the viral gene N; 17.32 for the viral gene RdRp; and 27.7 for RNAse P housekeeping gene. D-dimer and ferritin levels were both higher than the reference values (1316 µg/l and 518.9 ng/ml respectively).

After considerable systemic deterioration, the patient displayed cardiorespiratory arrest, without response, and died on December 1, after 8 days of hospitalization.

Due to the unusual manifestations that the patient showed during the course of the disease, and given the very fast and fatal outcome, we decided to analyze the sequence of the viral S gene in search of possible mutations. A PCR product of 4,119 bp containing the complete S gene was retrotranscribed and amplified with the SuperScript IV One-Step RT-PCR System (Thermo Fisher Scientific) using specific primers designed for that purpose: 5´-GGGGTACTGCTGTTATGTCTTT-3´, and 5´- CGCCAACAATAAGCCATCCG-3´. The PCR product was analyzed by agarose gel electrophoresis and sequenced using the fluorescent cycle-sequencing method (BigDye Terminator Ready Reaction Kit; Applied Biosystems) by automated Sanger technology with an ABI 3500 sequencer (ABI 3500 Series Genetic Analyzer; Applied Biosystems).

Sequence analysis was performed using the DNASIS MAX software (Hitachi), finding two nucleotide differences compared to the reference SARS-CoV-2 genome sequence: the A1841G mutation (Fig. 3 A) causing a change of an aspartic acid to a glycine in the aminoacidic sequence (D614G); and the C3172T mutation (Fig. 3B) causing a change of a histidine to tyrosine in the aminoacidic sequence (H1058Y). The localization of the mutations in the S protein were analyzed in comparison to the reference sequence, and tridimensional graphics were generated with the CoVsurver tool for mutation analysis of hCoV-19 at the Global Initiative for Sharing All Influenza Data (GISAID) database (, finding both mutations in regions not related to the receptor binding domain (Fig. 3 C).

Fig. 3
figure 3

Sequencing and identification of mutations in the viral S gene. Comparisons of the reference sequence of the S gene and the sequence obtained from the patient’s oropharyngeal and nasopharyngeal swab are shown, at the sites where the two mutations were found. A The change of an adenine for a guanine at position 1841 (A1841G) is highlighted in yellow, and the electropherogram obtained where this mutation was found (black arrow) is shown. B The change of a cytosine for a thymine in position 3172 (C3172T) and the electropherogram where this mutation was found. C Three-dimensional structural visualization of the viral S protein with the amino acid changes identified, shown as colored balls: mutation D614G in yellow and mutation H1058Y in blue. Lateral view (left), upper (center) and lateral view bound to the ACE-2 receptor (in green, right)

Discussion and conclusions

In our institution, throughout the pandemic many cases of COVID-19 were treated, however, the rest of the patients (with other diseases) were not neglected. For this purpose, two different emergency rooms were installed: one for respiratory emergencies (for patients with suspected COVID-19), and another for non-respiratory emergencies. The patient referred to in this report attended the latter, as she had no respiratory symptoms and no suspicion of SARS-CoV-2 infection.

Considering the pathological history of the patient and her gastrointestinal symptoms, a case of inflammatory bowel disease was considered. Immediate treatment strategy was focused on the gastrointestinal symptoms, with a fluid and electrolyte replacement therapy to stabilize the patient and be able to transfer her to the specialty area. Once in the gastroenterology unit, specific treatment was started for the pathology presented, including fluconazole after being diagnosed with esophageal candidiasis (a very common infection in omeprazole-treated patients) by an upper endoscopy one day before the hospitalization. However, and despite the efforts, the patient did not evolve favorably.

Due to the lack of response to treatment, several laboratory and clinical studies were carried out for differential diagnoses. On November 26 (day 3 of hospitalization) a blood culture was performed, as the elevated procalcitonin concentration in serum suggested a bacterial infection. At the same time, treatment with imipenem was started. On November 27, for the first time the patient showed a respiratory symptom: dyspnea. The CT scan examination revealed a pneumonic inflammatory process, leading to the first suspicions of a SARS-CoV-2 infection, even though the patient did not show the classic symptoms of the disease. On November 28, D-dimer and ferritin levels were analyzed, both displaying elevated concentrations, and the suspicions were confirmed by a RT-qPCR test on November 29, finding high SARS-CoV-2 viral loads. By that time, the patient was showing intercostal retractions and spontaneous seizures.

The electrolyte disorder and the metabolic acidosis identified at hospital admission can be explained by the common gastrointestinal symptoms associated with ICUC, although it is also known that gastrointestinal disorders such as anorexia and diarrhea can occur in patients with COVID-19 [6, 7]; therefore, it is difficult to elucidate whether the symptoms were due to the patient’s chronic disease or as a result of SARS-CoV-2 infection. Concerning electrolyte imbalance, after the replacement therapy the concentration of some electrolytes returned to the reference range, however, phosphorus, chloride and calcium values always remained outside the normal range. This was undoubtedly due to the existing kidney damage at the time of admission (Table 1) [8, 9].

Regarding the metabolic acidemia, it is important to point out that, although it was compensated by adjusting the CO2 levels, the serum bicarbonate concentration was always below the reference value. This data, together with the elevated urea and creatinine values ​​(Fig. 2 A and 2B) also prove the acute kidney damage suffered by the patient. Kidney damage has been described within the complications developed by COVID-19 patients, in fact, the evident kidney damage in the patient is associated with severe COVID-19, and decreased survival rates [10,11,12,13,14].

The patient’s hypoalbuminemia throughout the whole hospitalization time (Fig. 2 C), and the elevated D-dimer and ferritin concentrations are additional risk factors for a severe disease course and a poor prognosis [15,16,17]. Figure 1 highlights the parameters of percentage and total count of altered blood cells measured during the hospital stay. Regarding neutrophils and monocytes, it is known that there is an association between these elevated values ​​and the severity of the disease [15, 16].

An acute lymphocytopenia has been seen in the blood of many. individuals with acute SARS-CoV-2 and is correlated with severe.

clinical outcome. This was the case of our patient, showing low lymphocyte count and percentage throughout the hospitalization time (Fig. 1B). The mechanisms that underlie lymphocytopenia are unclear but could reflect impaired lymphocyte proliferation, apoptosis, or extravasation into tissue [18].

Even though the patient showed all the clinical symptoms related to the pathological history of ICUC, the death was surely not due to this pathology, since the incidence of mortality reported is very low [19, 20]. Although it was not the main cause of death, the inflammatory chronic state could have increased the severity of the organ failure after SARS-CoV-2 infection, even in the absence of respiratory symptoms. In the same sense, SARS-CoV-2 infection could have participated in the poor response to treatment of the underlying disease and subsequent infections.

As for the mutations found in the viral S gene, the first one (D614G) is a mutation that emerged very early in the pandemic and quickly displaced the original sequence due to the biological advantages that this change confers, such as higher infectivity [21]. Today, this change is found in more than 99% of all the sequences reported throughout the entire pandemic. It is therefore not surprising that such a change was found. However, the second mutation (H1058Y) does draw attention as it is a rare mutation found in only around 0.02% of reported sequences worldwide (; [22,23,24]. Interestingly, this change is not located in the receptor binding domain of the S protein, responsible of the recognition of the ACE-2 receptor (Fig. 3 C). It is necessary to further analyze whether this mutation gives a biological advantage to the virus or whether it generates a difference in any of the biological processes of the infection, such as the affinity for the host receptor (ACE-2 or other molecules), the infective capacity, replication capacity, immune system evasion, etc. In addition, it should be noted that, for this particular case, only the S gene sequence was analyzed, so we cannot rule out the existence of other mutations in any of the other viral genes.

It is also interesting to note that the patient did not show respiratory symptoms, even though she did have an active infection in the respiratory tract, confirmed by the RT-qPCR test from oropharyngeal and nasopharyngeal exudates, with a high viral load in these tissues. It is likely that the clinical history of the patient, as well as her own genetic characteristics, could have promoted a different response to the SARS-CoV-2 infection, including the rapid organ failure and fatal outcome, despite the absence of comorbidities that are frequently associated with a poor prognosis, such as diabetes, obesity, or hypertension. That is why atypical cases of COVID-19 should not be underestimated, nor should patients with no comorbidities or symptoms associated with the severity of the disease.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.



Coronavirus disease 2019


Severe Acute Respiratory Syndrome Coronavirus 2


Angiotensin Converting Enzyme 2


Idiopathic Chronic Ulcerative Colitis


Acute Kidney Injury Network


Controlling Nutritional status


Body Mass Index


Computed tomography


Quantification cycle


  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.

    Article  CAS  Google Scholar 

  2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9.

    Article  CAS  Google Scholar 

  3. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80. e8.

    Article  CAS  Google Scholar 

  4. Thakur V, Ratho RK, Kumar P, Bhatia SK, Bora I, Mohi GK, et al. Multi-Organ Involvement in COVID-19: Beyond Pulmonary Manifestations. J Clin Med. 2021;10(3):446.

    Article  CAS  Google Scholar 

  5. Singh J, Pandit P, McArthur AG, Banerjee A, Mossman K. Evolutionary trajectory of SARS-CoV-2 and emerging variants. Virol J. 2021;18(1):166.

    Article  CAS  Google Scholar 

  6. Vuille-Dit-Bille RN, Liechty KW, Verrey F, Guglielmetti LC. SARS-CoV-2 receptor ACE2 gene expression in small intestine correlates with age. Amino Acids. 2020;52(6–7):1063–5.

    Article  CAS  Google Scholar 

  7. Hasel K, Salim A, Verma S, D’Adamo C, Arrup D, Vinayek R, et al. Prevalence of gastrointestinal symptoms, hepatic dysfunction, and outcomes in hospitalized patients with COVID-19 infection: an early experience. Cureus. 2022;14(2):e22152.

    Google Scholar 

  8. Claure-Del Granado R, Bouchard J. Acid-base and electrolyte abnormalities during renal support for acute kidney injury: recognition and management. Blood Purif. 2012;34(2):186–93.

    Article  Google Scholar 

  9. Chen X, Xu J, Li Y, Xu X, Shen B, Zou Z, et al. Risk Scoring Systems Including Electrolyte Disorders for Predicting the incidence of Acute kidney Injury in Hospitalized Patients. Clin Epidemiol. 2021;13:383–96.

    Article  Google Scholar 

  10. Braun F, Lutgehetmann M, Pfefferle S, Wong MN, Carsten A, Lindenmeyer MT, et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet. 2020;396(10251):597–8.

    Article  CAS  Google Scholar 

  11. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020;8(7):738–42.

    Article  CAS  Google Scholar 

  12. Regolisti G, Maggiore U, Di Mario F, Gentile M, Benigno GD, Gandolfini I, et al. The Association of New-Onset Acute kidney Injury and Mortality in critically ill patients with COVID-19 with less severe clinical conditions at admission: a moderation analysis. Front Med (Lausanne). 2022;9:799298.

    Article  Google Scholar 

  13. Algahtani FD, Elabbasy MT, Alshammari F, Atta A, El-Fateh AM, Ghoniem ME. Evolving Risk of Acute Kidney Injury in COVID-19 Hospitalized Patients: A Single Center Retrospective Study. Medicina (Kaunas). 2022;58(3):443.

    Article  Google Scholar 

  14. Hadadi A, Farrokhpour H, Rashedi S, Kafan S, Sotoudehnia M, Rahimzadeh H, et al. Long-term impact of the COVID-19 associated AKI: the relationship between kidney recovery and mortality in a 10-Month follow-up cohort study. Kidney Blood Press Res. 2022;47(7):486–91.

    Article  CAS  Google Scholar 

  15. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62.

    Article  CAS  Google Scholar 

  16. Cyprian FS, Suleman M, Abdelhafez I, Doudin A, Masud Danjuma M, Mir FA, et al. Complement C5a and clinical markers as predictors of COVID-19 Disease Severity and Mortality in a multi-ethnic Population. Front Immunol. 2021;12:707159.

    Article  CAS  Google Scholar 

  17. Siddiqui SS, Chakraborty N, Muzaffar SN, Gurjar M. Albumin kinetics in Sepsis and COVID-19. Crit Care Explor. 2022;4(3):e0651.

    Article  Google Scholar 

  18. Moss P. The T cell immune response against SARS-CoV-2. Nat Immunol. 2022;23(2):186–93.

    Article  CAS  Google Scholar 

  19. Falvey J, Greenwood R, Creed TJ, Smithson J, Sylvester P, Fraser A, et al. Mortality in ulcerative colitis-what should we tell our patients? Three year mortality following admission for the treatment of ulcerative colitis: a 6 year retrospective case review. Frontline Gastroenterol. 2010;1(1):35–41.

    CAS  Google Scholar 

  20. Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L, Colombel JF. Ulcerative colitis. Lancet. 2017;389(10080):1756–70.

    Article  Google Scholar 

  21. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 Virus. Cell. 2020;182(4):812–27. e19.

    Article  CAS  Google Scholar 

  22. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill. 2017;22(13):30494.

    Article  Google Scholar 

  23. Elbe S, Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob Chall. 2017;1(1):33–46.

    Article  Google Scholar 

  24. Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, et al. GISAID’s Role in Pandemic Response. China CDC Wkly. 2021;3(49):1049–51.

    Article  Google Scholar 

Download references


We want to thank Eligia Juárez-Torres for her assistance in the molecular assays, and Mariana Villalba for the design of the primers.


This work was sponsored by the Hospital General de México with federal sources, through the Research Department. The registration number of the research protocol is DI/20/501/04/20. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations



SR collected, described, and interpreted the patient data regarding the COVID-19 disease. ALS performed the molecular experiments, analyzed the sequence data, and was a major contributor in writing the manuscript. EVB analyzed the molecular and clinical data and was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Authors’ information

SR is doctor in the Hospital General de México, and works in the General Directorate assistance area, he coordinates all the movements and data of COVID-19 patients inside of the hospital and the transfers with other health institutions. ALS is a researcher in the Hospital General de México, and works in the Genomic Medicine department, she is the research coordinator and participates in the data and results control of SARS-CoV-2 molecular diagnostic. EVB is a researcher at the General Hospital of Mexico, and head of the Genomic Medicine department, where the molecular diagnosis of SARS-CoV-2 is carried out.

Corresponding author

Correspondence to Ana Laura Sanchez-Sandoval.

Ethics declarations

Ethics approval and consent to participate

The study protocol was approved by the Ethics and Scientific Committees of the Hospital General de Mexico with the approval number DI/20/501/04/20 and was performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrón-Palma, E.V., Ríos-Zaragoza, S. & Sanchez-Sandoval, A.L. COVID-19: critical case of a patient with an atypical manifestation of the disease. Diagn Pathol 18, 4 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: